Cwtch: Privacy Preserving Infrastructure for Asynchronous,

Decentralized, Multi-Party and Metadata Resistant Applications

Sarah Jamie Lewis
sarah@openprivacy.ca

June 28, 2018

Abstract

Communications metadata is known to be exploited
by various adversaries to undermine the security of
systems, to track victims, and to conduct large scale
social network analysis to feed mass surveillance.
Metadata resistant tools are in their infancy and re-
search into the construction and user experience of
such tools is lacking.

In this paper we present Cwtch, an extension of
the metadata resistant protocol Ricochet to support
asynchronous, multi-peer communications through
the use of discardable, untrusted, anonymous infras-
tructure.

Additionally, we present a threat model for eval-
uating metadata resistant systems, and discuss the
current limitations and future work required to fully
realize usable metadata resistance tools.

1 Introduction

During a debate at Johns Hopkins University in
2014, the former director of the NSA Michael Hay-
den infamously stated, “We kill people based on meta-
data” [13]. Even with such a proclamation, metadata
resistance, or the security discipline of hiding not only
the content, but also the context of a communication
from an adversary, has not received much attention.

In recent years, public awareness of the need and
benefits of end-to-end encrypted solutions has in-

creased with applications like Signal', Whatsapp?
and Wire® now providing users with secure commu-
nications. However, these tools require various levels
of metadata exposure to function, and much of this
metadata can be used to gain details about how and
why a person is using a tool to communicate. [19].

One tool that does seek to reduce metadata is Ric-
ochet [1], first released in 2014. Ricochet uses Tor
onion services to provide secure end-to-end encrypted
communication, and to protect the metadata of com-
munications. There are no centralized servers that as-
sist in routing Ricochet conversations. No one other
than the parties involved in a conversation can know
that such a conversation is taking place.

Ricochet isn’t without limitations; there is no
multi-device support, nor is there a mechanism for
supporting group communication or for a user to send
messages while a contact is offline. This makes adop-
tion of Ricochet a difficult proposition; with even
those in environments that would be served best by
metadata resistance unaware that it exists [9] [18].

Inspired by these reasons we present Cwtch, a pro-
tocol for providing asynchronous, metadata-resistant,
multi-party messaging based on Ricochet through the
use of untrusted, discardable relay servers - in doing
so we maintain the metadata-resistance of ricochet’s
decentralized design, while adding capabilities that
support all the features we have mentioned.

Further, we demonstrate how Cwtch can be used

Thttps://signalapp.org
2https://whatsapp.com
Shttps://wire.org

as privacy preserving infrastructure to build new de-
centralized, metadata resistant applications without
reinventing lower protocol level functionalities.

Our work makes the following contributions:

e We define a threat model for metadata resis-
tance, including metadata resistance for group
communications.

e We introduce Cwtch?, the first free and open-
source software providing metadata resistant
multi-party communications, that uses un-
trusted, discardable infrastructure to facilitate
offline sending. Cwtch is designed as an infras-

tructure layer on which other applications can
be built.

e We discuss the various open problems that limit
the mass adoption of metadata resistant tools,
and propose a number of future research direc-
tions.

We define the metadata resistance problem in Sec-
tion 2. Section 3 describes Cwtch, our system-imple-
menting metadata resistant group communications.
Section 4 contains an analysis of the metadata resis-
tance properties of Cwtch, and a scalability evalua-
tion is provided in Section 5. In Section 6 we discuss
building metadata resistant applications using Cwtch
as an infrastructure layer, explore the current limita-
tions of Cwtch and enumerate a number of open prob-
lems that must be solved in order to realize the mass
adoption of metadata resistant tools. Related work
is discussed in Section 7, and Section 8 concludes.

2 Problem Setting

This section describes the metadata resistance model
addressed by Cwtch. It first describes the problem
and enumerates the properties of an ideal solution.
We describe how an extension of Ricochet can be
used to partially solve this problem, and then walk
through a toy solution.

4Cwtch is a Welsh word that roughly translates to “a hug
that creates a safe-space”.

2.1 Metadata Resistance

It is important to identify and understand that meta-
data is ubiquitous in communication protocols. How-
ever, information that is used to facilitate communi-
cation between peers and servers is also highly rele-
vant to adversaries wishing to exploit such informa-
tion. [17]

For our purposes, we will assume that the content
of a communication is encrypted in such a way that
an adversary is practically unable to break, and as
such will limit our scope to the context of a commu-
nication (i.e. the metadata).

We seek to protect the following communication
contexts, from all adversaries (including supporting
infrastructure):

e Who is involved in a communication? It may be
possible to identify people or simply device or
network identifiers. E.g., “this communication
involves Alice, a journalist, and Bob a govern-
ment employee.”.

e Where are the participants of the conversation?
E.g., “during this communication Alice was in
France and Bob was in Canada.” - Using com-
munications metadata to track the location of
users is well studied. [16]

e When did a conversation take place? The tim-
ing and length of communication can reveal a
large amount about the nature of a call, e.g.,
“Bob a government employee, talked to Alice on
the phone for an hour yesterday evening. This
is the first time they have communicated.”

e How was the conversation mediated? Whether
a conversation took place over an encrypted
or unencrypted email can provide useful intel-
ligence. E.g., “Alice sent an encrypted email to
Bob yesterday, whereas they usually only send
plaintext emails to each other.”

e What is the conversation about? Even if the
content of the communication is encrypted it is
sometimes possible to derive a probable context
of a conversation without knowing exactly what
is said, e.g. “a person called a pizza store at

dinner time” or “someone called a known suicide
hotline number at 3am.”

Beyond individual conversations, we also seek to
defend against context correlation attacks, whereby
multiple conversations are analyzed to derive higher
level information:

e Relationships: Discovering social relationships
between a pair of entities by analyzing the fre-
quency and length of their communications over
a period of time. E.g. Carol and Eve call each
other every single day for multiple hours at a
time.

e Cliques: Discovering social relationships be-
tween a group of entities that all interact with
each other. E.g. Alice, Bob and Eve all commu-
nicate with each other.

e Loosely Connected Cliques and Bridge In-
dividuals: Discovering groups that communi-
cate to each other through intermediaries by an-
alyzing communication chains (e.g. everytime
Alice talks to Bob she talks to Carol almost im-
mediately after; Bob and Carol never communi-
cate.)

e Pattern of Life: Discovering which communi-
cations are cyclical and predictable. E.g. Alice
calls Eve every Monday evening for around an
hour.

2.1.1 Centralized Servers

The vast majority of communication protocols rely on
centralized servers to handle routing, and otherwise
facilitate communications. Even if participants were
to trust such a server unilaterally, that does not solve
the metadata analysis problem.

An adversary who is able to observe traffic between
each participant and the centralized server will likely
be able to perform statistical correlation and recon-
struct the routing table of the server — even if com-
munication between the server and the participants
is encrypted [14] [6] [20].

Such an adversary would likely be able to derive
much of the metadata we have described above.

The Tor Network [8] provides some degree of pro-
tection from this kind of metadata analysis: a (non-
global) adversary cannot simply observe communi-
cation between participants because traffic is obfus-
cated by onion routing. Other anonymization net-
works such as i2p° provide similar properties.

However, even if we were to ensure all communi-
cation took place over an anonymizing network, the
centralized server still holds a wealth of information
regarding relationships between participants. In or-
der to provide metadata-resistance we must eliminate
the need for the centralized server to be aware of this
information.

2.2 Goals

To motivate our work we define the properties that
any -solution to the metadata resistance problem
should have. For this we will rely on definitions pro-
vided by a previous systemization of secure messaging
properties by Unger et al. [21].

Any modern, secure messaging solution must pro-
vide Confidentiality, Integrity and Authentication.

As mentioned in our introduction and problem
statement we require any solution be Asynchronous
and provide Multi-Device Support.

For this paper we will separate the concepts
of Asynchronous Key-Fxchange and Asynchronous
Conversation, focusing on achieving Asynchronous
Conversation. We will discuss Asynchronous Key-
Exchange further in Section 6.

We define that any metadata resistant sys-
tem must be Anonymity Preserving, providing
Sender Anonymity, Recipient Anonymity, Participa-
tion Anonymity and Unlinkability between protocol
messages belonging to the same conversation.

In an adversarial environment requiring metadata
protection we must provide mechanisms for both For-
ward Secrecy and Backward Secrecy, such that com-
promise of key material does not enable decryption
of previous or succeeding data.

For group application the properties of Participant
Consistency, Speaker Consistency and Destination
Validation are necessary to ensure a cryptographi-

Shttps://i2p.org

cally secure and Global Transcript, and as such be
Causality Preserving.

Some properties of secure group communications
are ostensibly desired, but also difficult to imple-
ment in a way that does not compromise usability
in a decentralized, metadata resistant environment.
Computational FEquality and Trust FEquality require
a substantial amount of pairwise communication in
a group context, the overhead for which is costly in
an environment where there may be high latency and
low (or no) availability between some participants.

Additionally, while the properties of Contractible
Membership and Ezxpandable Membership potentially
reduce the overhead of group management in such
an environment, we will not consider them in our
solution, because they are generally only achievable
with the same communication symmetry necessary
to achieve computational and trust equality, and the
aforementioned overhead of such algorithms is not
desirable

Finally we will state usability criteria for any so-
lution. Taking into account the networking environ-
ment and the likelihood of dropped or delayed pack-
ets, we require any solution to be Out-of-Order Re-
silient and Dropped Message Resilient.

2.3 Ricochet: An Overview

Ricochet is a secure messaging protocol which,
through its use of the Tor hidden service proto-
col, provides online 2-party instant messaging with
sender anonymity, recipient anonymity, participation
anonymity and partial unlinkability (to network ad-
versaries with limited scope) [1].

Ricochet is Anonymity Preserving and provides a
number of other properties including Confidentiality,
Integrity, Authentication, Speaker Consistency, and
Causality Preservation for instant messaging between
two parties.

In this paper we will build upon the Ricochet pro-
tocol to define and implement a metadata-resistant
group chat protocol. However, to start, it is impor-
tant to understand the properties that Ricochet can-
not provide us at all, as well as properties which Ric-
ochet does provide for two-party exchanges but which
we cannot extend to multi-party protocols.

Ricochet is not Asynchronous; it requires both par-
ties to be online at the same time in order to exchange
messages.

Further, properties like Forward Secrecy, Partic-
ipation Anonymity, and Authentication are derived
from the hidden service connection between two
servers, and thus cannot be trivially extended to pro-
vide equivalent end to end protection in a group set-
ting, and must instead be reimplemented at a higher
level.

2.4 Toy Solution: Omnline Metadata
Resistant Group Chat

A naive implementation of metadata-resistant group
chat which meets the majority of our goals is a scheme
we will call Online Group Chat:

e Setup: Each client involved in the group chat
establishes a Ricochet channel with every other
client.

e Messaging: When a client wishes to send a mes-
sage they must first encrypt the message to every
participating client, then send these messages to
every client along with a signature.

e Message Receipt / Attestation: Once a client has
received a message, they must decrypt it and
compare the contents of the message with the
signature If the signature is verified, they must
then check with all the other clients to ensure
that they all received the same message as well.

e Teardown: The group chat ends when the clients
destroy their Ricochet channels. Offline clients
are unable to participate in the chat from then
on.

Online Group Chat requires every client involved
in the group chat to maintain a connection to ev-
. . . nx(n—1) .

ery other client, which requires —5— communi-
cation channels. While this scheme does provide
many of our desired properties, it cannot provide
Asynchronous communication, and lacks the usabil-
ity properties that we desire, such as support for

dropped packets, unavailable group members and
multi-device support.

Further, requiring any one party to stay online is
undesirable; we cannot guarantee that any two peers
are available to communicate with each other in a
given period of time. Because of this, it is neces-
sary to introduce long-lived supporting infrastructure
(outside the peers themselves).

2.5 Introducing a Relay Server

The originator of the group chat, Alice, generates and
sends a group-key K, and a group-chat-server identi-
fier S to participants Bob and Carol, with whom she
has previous initiated pairwise Ricochet connections
with.

Alice, Bob, and Carol all create Ricochet connec-
tions to S using ephemeral Ricochet identifiers — .S
gains no information regarding who is connecting to
it.

When any of Alice, Bob and Carol wish to send
a message, they sign it using long term signing keys,
and encrypt it using K, and send the resulting cipher-
text cq to S where it is relayed to all other connected
peers.

Even if S is only used by a single group then S is
able to approximate the number of ephemeral con-
nections it serves, and thus can derive the number
of participants in a group. However, because of the
ephemeral anonymous connections, S gains no infor-
mation as to who is speaking or what is being said,
and as such is unable to gain any useful metadata.

Further, if each message includes a signature of a
previously seen message identifier, then .S has no abil-
ity to modify the transcript (by e.g. not distributing
a message to the rest of the group) without being de-
tected and because each connection to S is ephemeral
(and is regularly torn-down and rebuilt) S gains no
information useful to target modifications, and thus
can be assumed to be completely untrusted.

3 The Cwtch Protocol

We will now introduce the Cwtch Protocol, a decen-
tralized, metadata resistant, group communication

protocol based and expanded upon on the concepts
we have described above.
We begin by defining the actors within our system.

e Cwtch Peer: A single actor within the network
who can initiate connections with other Cwtch
Peers or with Cwtch Servers.

e Cwtch Server: Independently operated and
untrusted support infrastructure which can be
used by one of more groups to facilitate commu-
nication between Cwtch Peers.

Metadata-resistant in Cwtch is achieved through
the use of untrusted Servers that relay messages to
all parties. This broadcasting mechanism means that
a Cwtch Server is not aware of which peers a given
message was intended for.

We assume all supporting infrastructure is un-
trusted, even in cases where it may be set up by one
of the chat participants. We define the properties a
Cwtch Server must satisfy as follows:

e A Cwtch Server may be used by multiple groups
or just one.

e A Cwtch Server, without collaboration of a
group member, should never learn the identity
of participants within a group.

e A Cwtch Server should never learn the content
of any communication.

e A Cwtch Server should never be able to dis-
tinguish messages as belonging to a particular

group.

Further, all participants within a cwtch session
must be able to detect and/or successfully mitigate
when a cwtch server is acting dishonestly. Dishonest
behavior is defined as:

e Failing to relay any message: this will be de-
tected when a message ID appears in subsequent
messages, but which is not known to some par-
ticipants. Failure to deliver can be related to
server reliability (see section 6) and is not neces-
sarily malicious. Peers can request others resend
older messages (see section 3.3.1).

e Modifying a relayed message: this will be de-
tected as a failure to decrypt, and trigger a re-
send.

e Attaching duplicate messages to the timeline -
duplicate messages will be ignored as they will
share the same signature as a previously seen
message and be discarded.

While iterating these behaviors, it should be noted
that it is assumed that because a server is never aware
of the peers and groups that it is being used by, it is
only ever able to act in malicious ways in a random,
untargeted fashion.

3.1 Protocol Specification

Every Cwtch Peer is initialized with an Ed25519 pub-
lic/private key pair, vk and sk, as well as an RSA-1024
public/private key pair, Opk and Osk, used to set up
an onion service.

3.2 Connections

All communication in Cwtch, whether between
Cwtch Peers or between a Peer and a Server; takes
place over direct peer-to-peer Ricochet. connections
(over Tor onion services).

Each Cwtch peer establishes an onion service using
Opk and Osk. This onion service is set up to receive
Ricochet connections.

When a peer connects to another it must first au-
thenticate itself using the im.ricochet.auth.hidden —
service channel® - after which it is free to send mes-
sages on a im.cwtch.peer channel.

3.2.1 Identity Key Exchange

When two Peers wish the connect, at least one peer
must obtain the Cwtch identifier ofthe other and ini-
tiate an identity key exchange.

This pair-wise key exchange, shown in Figure 4 can
be done when a pair of clients are both online by
establishing a Ricochet connection between them and

6https://github.com/ricochet-
im/ricochet/blob/master/doc/protocol.md#authentication

then simply transmitting their name and vk to each
other.

Protocol: Identity Key Exchange

Alice Bob

alice; vKgiice

bOb; kaob

Figure 1: An overview of Identity Exchange

3.2.2 Group Setup

To create a'new group the initiator chooses a group
server Sy, and generates a symmetric group key kg.
The group identity [, is randomly generated and then
concatenated with.S, and signed with sk, to produce
a ticket, T, tied to the identity of the group. All
group parameters are then sent to each participating
member of the group.

Protocol: Group Setup

Alice
kg=KGen(1™)
I,={0,1}*
T;4=Sig(sk, SqllZ,)
GI = kg || I4]|T141Sg

Bob

GI

Vf(Vkalicm T197 SQHIQ)

Alice Carol

GI

Vf(Vkalice7 T1g7 SQHIQ)

Figure 2: An overview of Group Setup

Once an invite is received, the recipient verifies
SgllI, against Ty to ensure that the ticket has been

signed by the inviter. This prevents an attack
wherein someone who is not the originator of a group
attempts to invite an unsuspecting party to a group -
by doing this they would gain the ability to segment
the conversation and thus break the integrity of the
Global Transcript. The conversation ticket is sent on
every future message to the group so participants can
ensure that every member of the chat is listening on
the same server under the same group ID.

At this point, assuming peers accept the invitation
to join the group, peers then initiate a connection
with .

It is worth noting that peers who are invited to a
group may no know each other. When an invitation
is accepted a peers identifier is revealed to all group
members.

3.3 Group Chat

During Group Chat, when a Peer wishes to send a
message, they construct a GroupMessage GM , con-
taining the message M (padded and limited to 1024
bytes), the current timestamp 7', the most recently
seen message signature s,, from the group, an in-
crementing sequence number for this peers messages,
and the signed group identifier T;,. This group mes-
sage is encrypted with k4 to produce a ciphertext c.

The original GM is concatenated with ¢ and the
result is signed with sk to produce a signature s that
can be verified by the other group members.

To receive messages each Peer sets up a listen chan-
nel on the Server, and for each new message the
Server receives the Peer will receive a copy. It is
important to note that the Peer will not just receive
messages for their groups, but also ciphertexts from
other groups. Because they do not have an associ-
ated key, these message will fail to decrypt and are
simply discarded.

To verify a message is from a given peer, the re-
cipient must construct GM ||c and verify s using the
peer’s vk. Groups can be constructed in such a way
that some group members may not have performed
key exchanges with other group members, and as such
they will be unable to verify that a given message
came from the stated Cwtch peer. This behavior
could trigger a peer to attempt to initiate an identity

Protocol: Group Chat

Alice Sy
¢ <sEnc(ky, GM)

cm s I4]|Sg]lc

s <—s Sig(sk, cm)

CcS

Bob Sq

CcS

GM <—sDec(kg, c)
cem <= 14]|Sg]|c
Vi (vkaiice, s, cm)

PFigure 3: An overview of Group Chat

exchange with an onion, but in many usecases this
may not be necessary or desirable; that a peer held
a valid group encryption key may be sufficient. A
Cwtch peer will attempt identity key exchanges with-
all unknown group participants, but will not trust or
peer with these participants until user intervention.

3.3.1 Resending

Each peer maintains a group message sequence num-
ber which increments every time they send messages
to a given group. When a peer receives a message
from a group, they check to see if the author has
previously sent any messages to the group, and if
they have they compare the sequence number of the
last received message from that peer, to the sequence
number in the message they just received. If the se-
quence numbers are not sequential the Peer can send
a message to the group requesting that someone re-
sends the messages.

How this resend is implemented is ultimately an
application level detail (for some applications, a lost
GroupMessage might be seen as inevitable and not
critical).

Ricochet Channel im.cwtch.server.listen

1. Setup:

(a) Peer sends OpenChannel message to Server
(b) Server sends ChannelResult to Peer

2. On Group Message:

(a) When any Peer sends a GroupMessage
to the Server, the Server forwards the
GroupMessage to every other connected
Peer

Cwtch servers store messages for a specific length of
time and then discard them. Peers who are not online
when messages are sent can setup a fetch channel on
the server when they are next online and the server
will send all messages currently stored.

3.4 Group Expansion and Contrac-
tion

Adding and removing members from groups are de-
sirable functions; however, carrying them out in a
metadata resistant environment presents a number
of challenges. In particular, while we make the as-
sumption that participants are online during group
formation. For reasons given above, this assumption
is less defensible during group modification (which we
presume can happen at any time).

Further, adding state (such as a cryptographic
ratchet) to our system presents problems due to the
adversarial and availability model of servers and par-
ticipants. We must assume that participants never
receive certain messages, servers may clear their
cache at-will, and longer periods of disconnection
would result in certain members being unable to par-
ticipate in the conversation without online interven-
tion.

Forward Secrecy and Backward Secrecy in the
Cwtch protocol relies on opportunistic group rene-
gotiation with the group leader periodically sending
new group invites to online parties. Conversations

happening on the set of peers will migrate from one
group to the other, sending messages to both groups
until the transition is complete. See n 4 for more
information on mitigating potential attacks on this
approach.

A new member joining is a specific case of a group
expansion being explicitly triggered, but afterwards
acts no differently.

Backward Secrecy is also achieved from this mecha-
nism: once a member leaves a group, the group leader
simply ceases to send them new group invites, and
once the group has rotated completely to a new key
then they will no longer be able to participate in the
conversation.

This mechanism means that it is impossible for the
initiator of a group to leave the group. Any transfer
of ownership of a group is logically the destruction of
one group and the creation of another by a different
peer.

We assume the most likely avenue of compromise
of a group key is from the physical compromise of a
participants computer, detecting and recovering from
such a compromise is beyond the scope of this pa-
per, however, if any group key is compromised at any
point in time, adversaries will only be able to com-
promise group messages during that particular con-
versation. As all group key exchanges happen out of
band over peer to peer channels, once the group has
switched to a new key (and any compromised partic-
ipant has regenerated their private keys and initiated
new identity key exchanges), the conversation is no
longer compromised.

3.5 Signatures

In order to preserve metadata resistance, the system
requires that a participant have access to the group
and access to the peer’s identity in order to verify a
message came from a given peer.

However, this presents a potential attack vector. If
a malicious actor is a member of a particular group,
they could extract messages from one group and relay
them to another group that they control (with the
same GrouplD).

Top prevent this attack, signatures in Cwtch have
the following structure Sig(sk, I,||Sg||c) - This struc-

Ricochet Channel im.cwtch.server.send

1. Setup:

(a) Peer
Server

sends OpenChannel message to

(b) Server generates a Challenge C
(c) Server sends a successful ChannelResult
and C to Peer

2. Spam Guard: When the Peer wishes to send a
GroupMessage M

(a) Peer generate a random nonce N
(b) Peer calculates P = sha256(N||M||C)
(c) If P[0: 2] != {0,0}; goto (a) Otherwise the

Peer proceeds to the next step.
3. Send:
(a)
(b)
(c)

Peer sends M and P to Server
Server calculates P = sha256(N||M||C)

If P[0 : 2] == {0,0}; The Server-accepts
the messages as having provided adequate
proof of work, otherwise the server discards
the message as spam

Server closes the channel.

ture binds a given encrypted group message to a
group ID and a specific server and ciphertext. As
such even if an adversary were to extract the message
from a given group and relay it to another group the
members of that group would not be able to verify
that the message unless they shared the same server
and group key (this would mean that they would re-
ceive all messages from that group anyway, mitigat-
ing the attack, and making the compromise obvious.

3.6 Spam Resistance

One major potential pitfall with this kind of design is
spam. While somewhat counteracted by the decen-
tralized nature of the protocol (anyone can setup and
use a cwtch server), we must consider how to prevent
an individual cwtch server from being overwhelmed
by bogus messages.

Proof-of-Work places a cap on the number of mes-
sages that are accepted by the server that is propor-
tional to the computational power of an adversary.

This certainly doesn’t prevent a moderately funded
adversary from overwhelming a given Cwtch server,
but combined with the ability of groups to select and
move to an arbitrary Cwtch server, it makes targeted
attacks on-the communication of particular groups
difficult.

3.7 Multi-device Support

Protocol: Identity Key Exchange

Alice Bob

alice; VKaiice; [Jip

bob; vkeoes; [Jip

Figure 4: Modified Identity Exchange to support
Multiple Devices

We can achieve support for sharing an identity be-
tween multiple end-user devices in a number of dif-
ferent ways.

Naively, we could simply have a primary device
share identity and group keys with another device
over a dedicated ricochet channel. However this in-
creases the attack surface needed to compromise a
Cwtch peer.

Instead we introduce a third parameter in our iden-
tity key exchange. This parameter contains a list of
cross-signed identity verifications [Jiv.

To obtain these verifications a peer with an ac-
tive profile connects to a peer with a newly created

profile over a dedicated ricochet channel. Once au-
thenticated, each peers signs a concatenation of their
own Cwtch address, and the address of the connected
peer with vk and sends the resulting signature to the
connected peer.

This signature can then be exchanged with con-
tacts along with a list of Cwtch addresses as proof
that any of those Cwtch address belong to the same
identity.

4 Threat Model / Metdata Re-
sistance Analysis

Now that we have outlined the Cwtch Protocol, we
will present an analysis of the metadata that a ma-
licious entity could attempt to extract from the sys-
tem.

4.0.1 A Note on Adversaries

Adversary models of protecting metadata in de-
centralized systems has been previously system-
atized [11]. We will discuss Cwtch within the context
of those adversaries.

4.1 Adversary: Relay Servers

Cwtch Servers are responsible for supporting asyn-
chronous, multi-party communication through relay-
ing messages. While they have access to metadata
about the receipt times of GroupMessages and the
access pattern of ephemeral identifiers, they should
not be able to derive further information from these.

4.1.1 Peer / Server Metadata

Peers connect to servers over Ricochet using an
ephemeral identifier. There is no connection between
a Peer’s long-term identity and its interaction with a
server or any set of servers.

Every peer receives every message sent to a par-
ticular server. This is equivalent to the naive PIR
design, in which every participating peer receives all
the information in the system, and all decryption is
conducted by the peer. In this manner, the server

10

gains no information about which sent messages are
intended for which recipients.

Such a design can be see as inefficient, but the po-
tential inefficiencies must be weighed against the un-
derstanding that Cwtch has no central servers. Each
group can choose any Cwtch server to act as a re-
lay for the messages for that group, or they can set
up their own. The load for Cwtch messaging is not
centered on a single server or set of servers.

4.1.2 Attack Vector: Timing Sidechannels

There is a potential for information leak through the
timing differences of various peers as they listen to
messages from the server.

A Peer must attempt decryption of all messages
under all group keys. If peers find a successful de-
cryption they can stop trying other group keys. De-
pending on implementation, this has the potential to
leak into the listen channel in the form of a noticeable
difference in time between processing a decryptable
message vs. a non-decryptable one.

While such a leak would be difficult to capitalize
on, based on the other metadata resistance properties
we discuss in this section, it is still undesirable.

Our prototype implementation separates receiving
messages on the listen channel from attempted de-
cryption through message passing; thus the listen
channel timing runs independently from any decryp-
tion attempts.

4.1.3 Attack Vector: Malicious Servers Esti-
mating Group Cliques

One possible attack vector present in Cwtch is the
ability for a malicious server to deny certain connec-
tions with the aim of isolating a group on a given
server. This may lead to the server being able to
determine or estimate certain properties about the
group (size, message frequency, pattern of life).
Such analysis would be difficult and opportunistic,
as mentioned peers connect using ephemeral iden-
tifiers which they rotate periodically, and multiple
devices belonging to the same peer will exhibit be-
haviour similar to multiple users. Groups are free
to rotate servers at any time. Any malicious server

attempting to perform such an attack would either
have to rely on data outside of the system (targeted
surveillance) and/or make a number of assumptions
about how their server is being used (e.g. assuming
two ephemeral peer identifiers are actually the same
peer).

It is possible to make this attack even more diffi-
cult by having peers create a new connection to the
server whenever they wish to send a message. This
would reduce the server’s ability to link messages to
a given group to zero, but comes at the expense of
increased latency in addition to the cost of setting up
new Ricochet connections.

4.1.4 Attack Vector: Cwtch Servers Over-

whelming Peers

A Cwtch Server can construct their own arbitrary
message and overwhelm a peer/multiple peers. As
with other attacks outlined here, such a denial of ser-
vice attack could not be targeted and as such would
be opportunistic. Peers gain knowledge about how
busy a given server is and so could detect and-de-
cide to move servers if message latency/processing
was greatly impacted by load.

4.2 Adversary: Harvesters

Peers and Servers are able to observe all traffic in a
given Cwtch system. Only peers belonging to certain
groups are able to decrypt messages for those groups.

Harvesters are adversaries that can gather and
store such information, and may also attempt con-
nections to every Cwtch peer they identify to collect
and store Cwtch Peer Identity mappings.

The usefulness of a widely collected mapping of
Cwtch Peer Identities is limited. Basic identity infor-
mation in Cwtch (name, onion address) is assumed
to be public. Assuming the Harevester was left as un-
trusted, they would gain no more information from
which to build a more detailed social map.

11

4.2.1 Attack Vector: Decryption after Key
Compromise

The main risk of such harvester collection is future
key compromises that provide unencrypted access to
message communications and allow context to be de-
rived after the fact.

The main defence against this is shorter group con-
texts, as discussed in Section 3.4.
4.2.2 Attack Vector: Peers
Group Cliques

Estimating

Peers gain some information regarding the utilization
of the server. They are able to make note of the num-
ber of messages (which they are unable to decrypt)
and the time these messages are received. Peers gain
no information about who is sending these messages
and, unlike servers, are not able to link any two given
messages together (unless they are part of the group).

4.3 Friends

Cwtch Peers build direct connections and trusted
relationships with other Cwtch Peers. They do
gain access to who and by being active participants
in communication they de-facto gain access to the
other kinds of metadata discussed. Friends, however,
should only ever gain information about groups that
they are invited too, and identities presented to them.

Friends can also attempt to get friends to joining
a group. However, a Peer must explicitly accept a
Grouplnvite before joining a server.

We will not consider the threat implications of
friends exploiting trust relationships while in a group
or to gain access to a group (e.g. leaking plaintext
GroupMessages, social engineering).

4.4 Sniffers

We categorize a Sniffer as any adversary able to ob-
serve or otherwise monitor connections to and from
Cwtch Peers and Servers. The capabilities of this
adversary are proportional to the protection of the
underlying anonymity network.

While we assume that most practical adversaries
are unable to derive any useful information from the

underlying anonymity network, our prototype uses
Tor onion service connections.

Tor is currently the largest anonymization network
with the location hiding properties necessary for the
security of Cwtch. As such, it is the obvious choice
to protect against the majority of network sniffing
adversaries.

However, Tor is not designed to be resistant to
a global passive adversary and any such adversary
should be assumed to be able to deduce the real iden-
tities of those communicating over Cwtch through
correlating peer channels and the resulting server
channels. In such a scenario the mixing properties
provided by Cwtch Servers would not survive long-
term analysis.

Should a design of a GPA-resistant anonymization
network gain wider adoption it would be prudent
to adopt that as the base communication layer in
Cwtch’s implementation.

5 Usage Patterns and Scalabil-
ity

Cwtch is designed to be decentralized, with individ-
ual groups being self-contained and independent of
any specific infrastructure.

It is possible to imagine two specific usage pat-
terns for Cwtch, which have a significant impact on
the scalability, latency and overall performance of a
Cwtch system.

At a high level, these usage patterns are:

e The number of Cwtch servers is proportional to
the number of groups. At the extreme we can
imagine each group sets up their own Cwtch
server.

e A large number of groups use a small number of
Cwtch servers. At the extreme we can imagine a
single Cwtch server handling every single group.

The distinction between these two usage patterns
is important to convey. In the former, Cwtch servers
deal with a low number of peers and messages at any
particular point in time. The latter usage pattern

12

Cwtch Message Latency vs. Number of Peers
| | | | |

8

Latency (seconds)

\I:I \:I \I:l

5 10 15
Number of Cwtch Peers

20

‘ [0 Mean Latency 0 Average Max Latency

Figure 5: Bar graph showing the increase in mean
latency and max latency as the number of peers using
a single server increases.

subjects any single Cwtch server to a large number
of peers and messages, thus making the specification
and design of the server the main factor in determin-
ing latency and storage requirements.

‘We ran multiple experiments to understand the ex-
pected latency of Cwtch given the above two usage
patterns, which is shown in Figure 5.

For a server handling small numbers of peers and a
single group, we saw mean latencies of between 2.6s
and 2.73 from the time a message was sent by a peer,
to the time it was received by the other peers. Max la-
tencies were between 3.9s and 4.6s. Much of this time
(30-50%) is attributable to the spamguard proof-of-
work construction defined in section 3.6, and not to
onion routing or server performance.

Server processing and connection management also
accounts for a significant portion fo the latency. We
believe that while some latency increase is to be ex-
pected as the number of peer connections rises, im-
provements in the Cwtch server code and optimistic

setup of send channels can likely reduce perceived la-
tency by the peer.

In testing we observed that as we increase the
number of peers and groups using a single server we
see both mean latencies and max latencies increase.
We tested our prototype server with 20 online peers
spread across 4 groups, we observed max latencies of
up to 7.6s while average latencies increased to around
7.2s. We expect that as peer connections grow, mean
and max latency (as well as server resource usage)
grows linearly. Further testing in larger environments
is needed to experimentally validate that belief.

It is important to note that the latency figures de-
scribed above are derived from extreme testing con-
ditions, with all peers sending a continual stream of
messages to the server, and the server streaming these
messages to all the peers. In the real world, conver-
sations are spread over time, with no more than a
few peers participating simultaneously,and thus we
expect far smaller per-peer load on the server. Future
testing is planned to validate this experimentally.

6 Discussion and Future Work

6.1 Metadata Resistant Applications

As stated in our introduction, one of our goals is
not to produce a single, monolithic catch-all applica-
tion/protocol, but to provide a framework for build-
ing privacy-preserving tools.

The base Cwtch protocol provides metadata resis-
tant communication for private groups. However, we
can build protocols on top of Cwtch to provide other
kinds of services.

These services are enabled by structured data be-
ing passed as part of a GroupMessage. For example,
a simple group text chat application might contain
the structure shown in Figure 6.

13

{

"type": "im.cwtch.text"
"fields" : {

"text": "An example message..."
by

¥

Figure 6: An example of what a standard Cwtch text
message might look like.

Furthermore, we can provide an implementation of
a public message or notice board that is also meta-
data resistant.”The only difference between a pub-
lic board and private group at the protocol level in
Cwtch is‘how invites and keys are managed. Open
groups would require an additional component to
manage registration requests and/or automate in-
vites for a given group.

In an open group the secrecy of the group key is
not a concern, as information posted to the group is
deemed public. This does open up the group to po-
tential censorship — if a server becomes aware that
a given open group is using it then the server can
discover the key and use that to identify and block
messages from that group. Other censorship resis-
tant publishing systems have suggested using thresh-
old cryptography to split data between a number of
servers (and thus requiring pieces to be obtained from
a subset of servers before decryption can occur) [22].

Outside of such strategies, given a diverse set of
Cwtch servers, even if certain Cwtch servers did not
want to host a given open group (enough to actively
censor it), others hopefully would.

It is worth nothing that servers cannot modify any
data in an open group, even with possession of the
group key. Attempting to modify a group message
would mean that members would be unable to verify
the signature.

We can define a structure for such notice board
messages; for example, a Craiglist-esque’ personals
section might look like the one shown in Figure 7.

"https://craigslist.com

{

"type": "im.cwtch.listing",
"fields" : {

"title":"24 W4WM Just moved to...",
"message":"Hi Everyone,....",
"tags": "platonic, wé4w, w4m"

}

}

Figure 7: An example of how a notice board applica-
tion based on Cwtch might be implemented.

Clients can interpret structured messages in a va-
riety of ways depending on the type of the message
sent, and these can be tailored to the users’ prefer-
ences and threat models.

This does open up a potential issue with conflicting
message types being sent over the same channel. It is
expected that clients will focus on a particular type of
Cwtch application, and ignore message types that do
not comply, e.g. a dating app based on Cwtch might
support groups of both listings and group chats, but
have specific application handling to determine how
these are displayed.

6.2 Limitations and Open Problems

In this paper, we have not addressed a variety of
adoption and usability concerns, which are essential
to resolve before widespread use of metadata resis-
tant tools becomes a practical possibility.

e Offline Key Exchange: Cwtch requires that
any two peers are online at the same time before
a key exchange/group setup is possible. One po-
tential way to overcome this is through encoding
an additional public key and a Cwtch server ad-
dress into a Cwtch peer identifier. This would
allow peers to send encrypted messages to an of-
fline Cwtch peer via a known server, with the
same guarantees as a Cwtch group message.

This approach is not without issues, as by encod-
ing metadata into the Cwtch identifier we allow
adversaries to mount partially targeted attacks
(in particular denial-of-service attacks against

14

the Cwtch server with the aim of disrupting new
connections). However, the benefit of first con-
tact without an online key exchange is likely
worth the potential DoS risk in many threat
models.

User Experience of Failures: Environments
that offer metadata resistance are plagued with
issues that impact usability, e.g. higher latencies
than seen with centralized, metadata-driven sys-
tems, or dropped connections resulting from un-
stable anonymization networks. Additional re-
search is needed to understand how users experi-
ence these kinds of failures, and how apps should
handle and/or communicate them to users.

Increasing Anonymity Sets vs. Decentral-
ization: Heavily utilized Cwtch servers increase
message latency and the resources a client re-
quires to process messages. While Cwtch servers
are designed to be cheap and easy to set up, and
Cwtch -peers are encouraged to move around,
there is a clear balance to be found between
increasing the anonymity set of a given Cwtch
server (to prevent targeted disruptions) and the
decentralization of Cwtch groups.

Discovering Cwtch Servers: Much of the
strength of Cwtch rests on the assumption that
peers and groups can change groups at any time,
and that servers are untrusted and discardable.
However, in this paper we have not introduced
any mechanism for finding new servers to use to
host groups. We believe that such an advertising
mechanism could be built over Cwtch itself.

Usability of Cwtch Identifiers: Tor onion
service addresses are not user friendly, and v3
onion service addresses compound the issue by
making identifiers much longer. Ideally users
would be able to provide friends and associates
with a more friendly handle, or their friends and
associates would be able to discover them in a
consistent, reliable way.

Delivery Reliability vs. Server Re-
source/Peer Availability: In Cwtch, servers
have full control over the number of messages

they store and for how long. This has an un-
fortunate impact on the reliability of group mes-
sages: if groups choose an unreliable server, they
might find their messages have been dropped.
While we provide a mechanism for detecting
dropped /missing messages, we do not currently
provide a way to recover from such failures.
There are many possible strategies from asking
peers to resend messages to moving to a different
server, each one with benefits and drawbackss.
A full evaluation of these approaches should be
conducted to derive a practical solution.

7 Related Work

In recent years secure, private messaging (including
group messaging) has risen in prominence and is now
commonly deployed[10] through apps such as Signal.
However, systems that aim to protect not only the
contents of the communication but also any metadata
are still an active area of research.

Multiple proposed metadata resistant communi-
cation architectures have relied on PIR: Onion-
PIR [7] divides server responsibilities between a con-
trol server to handle user registrations, and multiple
PIR servers which are assumed to-be non-colluding.
In contrast, Talek [3] presents a private pub-sub ar-
chitecture based on PIR and introduces two novel
techniques: Oblivious Logging and Private Notifica-
tions. Talek is designed to protect a large number
of client communications from a small number of un-
trusted servers. Talek require clients to issue dummy
requests when they do not need to read and write.

Riposte [4] describes a reverse-PIR scheme in which
clients are able to write to a remote database with-
out revealing which row they have written to. This
scheme is then used as the basis of an anonymous
messaging protocol.

Outside of PIR-based schemes,a proposal by Hope-
man [12] uses the construct of a public bulletin board
to provide unlinkable message exchange between two
parties. When posting a party includes a ”tag’, a
way of identifying the location their next post, be-
cause the messages are encrypted the messages can-
not be linked to each other. A mixnet ensures that

15

requests to the server are unlinkable.

Pond [15] presented a prototype for forward se-
cure, asynchronous messaging using Tor onion ser-
vices. Pond servers would receive and store messages
for users. Pond users interact with their home server
for receiving messages, but interact with the recipi-
ent’s server in order to send messages.

Dissent [5] presents an approach based on DC-
Nets [2], which allows members of a well-defined
group to communicate anonymously in a way that
provides accountability and resistance to denial-of-
service and Sybil attacks.

8 Conclusion

There are a many open problems that need to be
solved before metadata resistant tools are a suitable
option for most people.

In this paper we presented Cwtch, a protocol for
building metadata resistant applications based on
Ricochet. “The protocol solves a number of open
problems with contemporary metadata resistant de-
signs,” providing asynchronous, anonymous multi-
party communication through the use of untrusted,
discardable infrastructure.

We have released an open source prototype of
Cwtch which can be found at https://cwtch.im/.

References
[1] John Brooks. Ricochet: Anonymous instant
messaging for real privacy. https / /
ricochet.im. Accessed: 2018-03-10.

[2] David Chaum. “The dining cryptographers
problem: Unconditional sender and recipient
untraceability”. In: Journal of cryptology 1.1
(1988), pp. 65-75.

[3] Raymond Cheng et al. Talek: a Private Publish-

Subscribe Protocol. Tech. rep. Technical Re-
port. University of Washington, 2016.

Henry Corrigan-Gibbs, Dan Boneh, and David
Mazieres. “Riposte: An anonymous messaging
system handling millions of users”. In: Security
and Privacy (SP), 2015 IEEE Symposium on.
IEEE. 2015, pp. 321-338.

Henry Corrigan-Gibbs and Bryan Ford. “Dis-
sent: accountable anonymous group messag-
ing”. In: Proceedings of the 17th ACM confer-
ence on Computer and communications secu-
rity. ACM. 2010, pp. 340-350.

George Danezis. “Statistical disclosure at-
tacks”. In: IFIP International Information Se-
curity Conference. Springer. 2003, pp. 421-426.

Daniel Demmler, Marco Holz, and Thomas
Schneider. “OnionPIR: Effective Protection of
Sensitive Metadata in Online Communication
Networks”. In: International Conference on
Applied Cryptography and Network Security.
Springer. 2017, pp. 599-619.

Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion
router. Tech. rep. Naval Research Lab Wash-
ington DC, 2004.

Ksenia Ermoshina, Harry Halpin,~ and
Francesca Musiani. “Can Johnny Build a
Protocol? Co-ordinating developer and user
intentions for privacy-enhanced secure mes-
saging protocols”. In: Proceedings of the
2nd FEuropean Workshop on Usable Secu-
rity. Internet Society. Awailable at: https :
// pdfs . semanticscholar . org / 41le4 /
f623d838ead1a782de 6094 el fb762cdd32
pdf. 2017.

Ksenia Ermoshina, Francesca Musiani, and
Harry Halpin. “End-to-end encrypted messag-
ing protocols: An overview”. In: International
Conference on Internet Science. Springer. 2016,
pp- 244-254.

Benjamin Greschbach, Gunnar Kreitz, and
Sonja Buchegger. “The devil is in the meta-
dataNew privacy challenges in Decentralised
Online Social Networks”. In: Pervasive Com-
puting and Commaunications Workshops (PER-

16

[17]

[19]

COM Workshops), 2012 IEEE International
Conference on. IEEE. 2012, pp. 333-339.

Jaap-Henk Hoepman. “Privately (and unlink-
ably) exchanging messages using a public bul-
letin board”. In: Proceedings of the 14th ACM
Workshop on Privacy in the Electronic Society.
ACM. 2015, pp. 85-94.

Johns Hopkins. The Johns Hopkins Foreign
Affairs Symposium Presents: The Price of
Privacy: Re-Evaluating the NSA. 2014. URL:
https : / / www . youtube . com / watch ? v =
kV2HDM86XgI.

Dogan Kedogan, Dakshi Agrawal, and Stefan
Penz. “Limits of anonymity in open environ-
ments”. In: International Workshop on Infor-
mation Hiding. Springer. 2002, pp. 53—69.

Adam Langley. Pond. https://github.com/
agl/pond. Accessed: 2018-05-21.

Stevens Le Blond et al. “I know where you
are and what you are sharing: exploiting P2P
communications to invade users’ privacy”. In:
Proceedings of the 2011 ACM SIGCOMM con-
ference on Internet measurement conference.
ACM. 2011, pp. 45-60.

Jonathan Mayer, Patrick Mutchler, and John
C Mitchell. “Evaluating the privacy properties
of telephone metadata”. In: Proceedings of the
National Academy of Sciences 113.20 (2016),
pPp. 5536-5541.

Karen Renaud, Melanie Volkamer, and Arne
Renkema-Padmos. “Why doesnt Jane protect
her privacy?” In: International Symposium on
Privacy Enhancing Technologies Symposium.
Springer. 2014, pp. 244-262.

Christoph Rottermanner et al. “Privacy and
data protection in smartphone messengers”. In:
Proceedings of the 17th International Confer-
ence on Information Integration and Web-based
Applications € Services. ACM. 2015, p. 83.

[20]

Andrei Serjantov and Peter Sewell. “Passive at-
tack analysis for connection-based anonymity
systems”. In: Furopean Symposium on Research
in Computer Security. Springer. 2003, pp. 116
131.

Nik Unger et al. “SoK: secure messaging”. In:
Security and Privacy (SP), 2015 IEEE Sympo-
sium on. IEEE. 2015, pp. 232-249.

Marc Waldman, Aviel D Rubin, and Lorrie
Faith Cranor. “Publius: A Robust, Tamper-
Evident Censorship-Resistant Web Publishing
System”. In: 9th USENIX Security Symposium.
2000, pp. 59-72.

17

