tor/src/common/crypto_ed25519.c

354 lines
11 KiB
C

/* Copyright (c) 2013-2015, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/* Wrapper code for an ed25519 implementation. */
#include "orconfig.h"
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#include "crypto.h"
#include "crypto_curve25519.h"
#include "crypto_ed25519.h"
#include "torlog.h"
#include "util.h"
#include "ed25519/ref10/ed25519_ref10.h"
#include <openssl/sha.h>
/**
* Initialize a new ed25519 secret key in <b>seckey_out</b>. If
* <b>extra_strong</b>, take the RNG inputs directly from the operating
* system. Return 0 on success, -1 on failure.
*/
int
ed25519_secret_key_generate(ed25519_secret_key_t *seckey_out,
int extra_strong)
{
int r;
uint8_t seed[32];
if (! extra_strong || crypto_strongest_rand(seed, sizeof(seed)) < 0)
crypto_rand((char*)seed, sizeof(seed));
r = ed25519_ref10_seckey_expand(seckey_out->seckey, seed);
memwipe(seed, 0, sizeof(seed));
return r < 0 ? -1 : 0;
}
/**
* Given a 32-byte random seed in <b>seed</b>, expand it into an ed25519
* secret key in <b>seckey_out</b>. Return 0 on success, -1 on failure.
*/
int
ed25519_secret_key_from_seed(ed25519_secret_key_t *seckey_out,
const uint8_t *seed)
{
if (ed25519_ref10_seckey_expand(seckey_out->seckey, seed) < 0)
return -1;
return 0;
}
/**
* Given a secret key in <b>seckey</b>, expand it into an
* ed25519 public key. Return 0 on success, -1 on failure.
*/
int
ed25519_public_key_generate(ed25519_public_key_t *pubkey_out,
const ed25519_secret_key_t *seckey)
{
if (ed25519_ref10_pubkey(pubkey_out->pubkey, seckey->seckey) < 0)
return -1;
return 0;
}
/** Generate a new ed25519 keypair in <b>keypair_out</b>. If
* <b>extra_strong</b> is set, try to mix some system entropy into the key
* generation process. Return 0 on success, -1 on failure. */
int
ed25519_keypair_generate(ed25519_keypair_t *keypair_out, int extra_strong)
{
if (ed25519_secret_key_generate(&keypair_out->seckey, extra_strong) < 0)
return -1;
if (ed25519_public_key_generate(&keypair_out->pubkey,
&keypair_out->seckey)<0)
return -1;
return 0;
}
/**
* Set <b>signature_out</b> to a signature of the <b>len</b>-byte message
* <b>msg</b>, using the secret and public key in <b>keypair</b>.
*/
int
ed25519_sign(ed25519_signature_t *signature_out,
const uint8_t *msg, size_t len,
const ed25519_keypair_t *keypair)
{
if (ed25519_ref10_sign(signature_out->sig, msg, len,
keypair->seckey.seckey,
keypair->pubkey.pubkey) < 0) {
return -1;
}
return 0;
}
/**
* Check whether if <b>signature</b> is a valid signature for the
* <b>len</b>-byte message in <b>msg</b> made with the key <b>pubkey</b>.
*
* Return 0 if the signature is valid; -1 if it isn't.
*/
int
ed25519_checksig(const ed25519_signature_t *signature,
const uint8_t *msg, size_t len,
const ed25519_public_key_t *pubkey)
{
return
ed25519_ref10_open(signature->sig, msg, len, pubkey->pubkey) < 0 ? -1 : 0;
}
/** Validate every signature among those in <b>checkable</b>, which contains
* exactly <b>n_checkable</b> elements. If <b>okay_out</b> is non-NULL, set
* the i'th element of <b>okay_out</b> to 1 if the i'th element of
* <b>checkable</b> is valid, and to 0 otherwise. Return 0 if every signature
* was valid. Otherwise return -N, where N is the number of invalid
* signatures.
*/
int
ed25519_checksig_batch(int *okay_out,
const ed25519_checkable_t *checkable,
int n_checkable)
{
int res, i;
res = 0;
for (i = 0; i < n_checkable; ++i) {
const ed25519_checkable_t *ch = &checkable[i];
int r = ed25519_checksig(&ch->signature, ch->msg, ch->len, ch->pubkey);
if (r < 0)
--res;
if (okay_out)
okay_out[i] = (r == 0);
}
#if 0
/* This is how we'd do it if we were using ed25519_donna. I'll keep this
* code around here in case we ever do that. */
const uint8_t **ms;
size_t *lens;
const uint8_t **pks;
const uint8_t **sigs;
int *oks;
ms = tor_malloc(sizeof(uint8_t*)*n_checkable);
lens = tor_malloc(sizeof(size_t)*n_checkable);
pks = tor_malloc(sizeof(uint8_t*)*n_checkable);
sigs = tor_malloc(sizeof(uint8_t*)*n_checkable);
oks = okay_out ? okay_out : tor_malloc(sizeof(int)*n_checkable);
for (i = 0; i < n_checkable; ++i) {
ms[i] = checkable[i].msg;
lens[i] = checkable[i].len;
pks[i] = checkable[i].pubkey->pubkey;
sigs[i] = checkable[i].signature.sig;
oks[i] = 0;
}
ed25519_sign_open_batch_donna_fb(ms, lens, pks, sigs, n_checkable, oks);
res = 0;
for (i = 0; i < n_checkable; ++i) {
if (!oks[i])
--res;
}
tor_free(ms);
tor_free(lens);
tor_free(pks);
if (! okay_out)
tor_free(oks);
#endif
return res;
}
/**
* Given a curve25519 keypair in <b>inp</b>, generate a corresponding
* ed25519 keypair in <b>out</b>, and set <b>signbit_out</b> to the
* sign bit of the X coordinate of the ed25519 key.
*
* NOTE THAT IT IS PROBABLY NOT SAFE TO USE THE GENERATED KEY FOR ANYTHING
* OUTSIDE OF WHAT'S PRESENTED IN PROPOSAL 228. In particular, it's probably
* not a great idea to use it to sign attacker-supplied anything.
*/
int
ed25519_keypair_from_curve25519_keypair(ed25519_keypair_t *out,
int *signbit_out,
const curve25519_keypair_t *inp)
{
const char string[] = "Derive high part of ed25519 key from curve25519 key";
ed25519_public_key_t pubkey_check;
SHA512_CTX ctx;
uint8_t sha512_output[64];
memcpy(out->seckey.seckey, inp->seckey.secret_key, 32);
SHA512_Init(&ctx);
SHA512_Update(&ctx, out->seckey.seckey, 32);
SHA512_Update(&ctx, string, sizeof(string));
SHA512_Final(sha512_output, &ctx);
memcpy(out->seckey.seckey + 32, sha512_output, 32);
ed25519_public_key_generate(&out->pubkey, &out->seckey);
*signbit_out = out->pubkey.pubkey[31] >> 7;
ed25519_public_key_from_curve25519_public_key(&pubkey_check, &inp->pubkey,
*signbit_out);
tor_assert(fast_memeq(pubkey_check.pubkey, out->pubkey.pubkey, 32));
memwipe(&pubkey_check, 0, sizeof(pubkey_check));
memwipe(&ctx, 0, sizeof(ctx));
memwipe(sha512_output, 0, sizeof(sha512_output));
return 0;
}
/**
* Given a curve25519 public key and sign bit of X coordinate of the ed25519
* public key, generate the corresponding ed25519 public key.
*/
int
ed25519_public_key_from_curve25519_public_key(ed25519_public_key_t *pubkey,
const curve25519_public_key_t *pubkey_in,
int signbit)
{
return ed25519_ref10_pubkey_from_curve25519_pubkey(pubkey->pubkey,
pubkey_in->public_key,
signbit);
}
/**
* Given an ed25519 keypair in <b>inp</b>, generate a corresponding
* ed25519 keypair in <b>out</b>, blinded by the corresponding 32-byte input
* in 'param'.
*
* Tor uses key blinding for the "next-generation" hidden services design:
* service descriptors are encrypted with a key derived from the service's
* long-term public key, and then signed with (and stored at a position
* indexed by) a short-term key derived by blinding the long-term keys.
*/
int
ed25519_keypair_blind(ed25519_keypair_t *out,
const ed25519_keypair_t *inp,
const uint8_t *param)
{
ed25519_public_key_t pubkey_check;
ed25519_ref10_blind_secret_key(out->seckey.seckey,
inp->seckey.seckey, param);
ed25519_public_blind(&pubkey_check, &inp->pubkey, param);
ed25519_public_key_generate(&out->pubkey, &out->seckey);
tor_assert(fast_memeq(pubkey_check.pubkey, out->pubkey.pubkey, 32));
memwipe(&pubkey_check, 0, sizeof(pubkey_check));
return 0;
}
/**
* Given an ed25519 public key in <b>inp</b>, generate a corresponding blinded
* public key in <b>out</b>, blinded with the 32-byte parameter in
* <b>param</b>. Return 0 on sucess, -1 on railure.
*/
int
ed25519_public_blind(ed25519_public_key_t *out,
const ed25519_public_key_t *inp,
const uint8_t *param)
{
ed25519_ref10_blind_public_key(out->pubkey, inp->pubkey, param);
return 0;
}
/**
* Store seckey unencrypted to <b>filename</b>, marking it with <b>tag</b>.
* Return 0 on success, -1 on failure.
*/
int
ed25519_seckey_write_to_file(const ed25519_secret_key_t *seckey,
const char *filename,
const char *tag)
{
return crypto_write_tagged_contents_to_file(filename,
"ed25519v1-secret",
tag,
seckey->seckey,
sizeof(seckey->seckey));
}
/**
* Read seckey unencrypted from <b>filename</b>, storing it into
* <b>seckey_out</b>. Set *<b>tag_out</> to the tag it was marked with.
* Return 0 on success, -1 on failure.
*/
int
ed25519_seckey_read_from_file(ed25519_secret_key_t *seckey_out,
char **tag_out,
const char *filename)
{
ssize_t len;
len = crypto_read_tagged_contents_from_file(filename, "ed25519v1-secret",
tag_out, seckey_out->seckey,
sizeof(seckey_out->seckey));
if (len != sizeof(seckey_out->seckey))
return -1;
return 0;
}
/**
* Store pubkey unencrypted to <b>filename</b>, marking it with <b>tag</b>.
* Return 0 on success, -1 on failure.
*/
int
ed25519_pubkey_write_to_file(const ed25519_public_key_t *pubkey,
const char *filename,
const char *tag)
{
return crypto_write_tagged_contents_to_file(filename,
"ed25519v1-public",
tag,
pubkey->pubkey,
sizeof(pubkey->pubkey));
}
/**
* Store pubkey unencrypted to <b>filename</b>, marking it with <b>tag</b>.
* Return 0 on success, -1 on failure.
*/
int
ed25519_pubkey_read_from_file(ed25519_public_key_t *pubkey_out,
char **tag_out,
const char *filename)
{
ssize_t len;
len = crypto_read_tagged_contents_from_file(filename, "ed25519v1-public",
tag_out, pubkey_out->pubkey,
sizeof(pubkey_out->pubkey));
if (len != sizeof(pubkey_out->pubkey))
return -1;
return 0;
}