tor/src/common/compat_threads.c

408 lines
9.8 KiB
C

/* Copyright (c) 2003-2004, Roger Dingledine
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2017, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file compat_threads.c
*
* \brief Cross-platform threading and inter-thread communication logic.
* (Platform-specific parts are written in the other compat_*threads
* modules.)
*/
#include "orconfig.h"
#include <stdlib.h>
#include "compat.h"
#include "compat_threads.h"
#include "util.h"
#include "torlog.h"
#ifdef HAVE_SYS_EVENTFD_H
#include <sys/eventfd.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
/** Return a newly allocated, ready-for-use mutex. */
tor_mutex_t *
tor_mutex_new(void)
{
tor_mutex_t *m = tor_malloc_zero(sizeof(tor_mutex_t));
tor_mutex_init(m);
return m;
}
/** Return a newly allocated, ready-for-use mutex. This one might be
* non-recursive, if that's faster. */
tor_mutex_t *
tor_mutex_new_nonrecursive(void)
{
tor_mutex_t *m = tor_malloc_zero(sizeof(tor_mutex_t));
tor_mutex_init_nonrecursive(m);
return m;
}
/** Release all storage and system resources held by <b>m</b>. */
void
tor_mutex_free_(tor_mutex_t *m)
{
if (!m)
return;
tor_mutex_uninit(m);
tor_free(m);
}
/** Allocate and return a new condition variable. */
tor_cond_t *
tor_cond_new(void)
{
tor_cond_t *cond = tor_malloc(sizeof(tor_cond_t));
if (BUG(tor_cond_init(cond)<0))
tor_free(cond); // LCOV_EXCL_LINE
return cond;
}
/** Free all storage held in <b>c</b>. */
void
tor_cond_free_(tor_cond_t *c)
{
if (!c)
return;
tor_cond_uninit(c);
tor_free(c);
}
/** Identity of the "main" thread */
static unsigned long main_thread_id = -1;
/** Start considering the current thread to be the 'main thread'. This has
* no effect on anything besides in_main_thread(). */
void
set_main_thread(void)
{
main_thread_id = tor_get_thread_id();
}
/** Return true iff called from the main thread. */
int
in_main_thread(void)
{
return main_thread_id == tor_get_thread_id();
}
#if defined(HAVE_EVENTFD) || defined(HAVE_PIPE)
/* As write(), but retry on EINTR, and return the negative error code on
* error. */
static int
write_ni(int fd, const void *buf, size_t n)
{
int r;
again:
r = (int) write(fd, buf, n);
if (r < 0) {
if (errno == EINTR)
goto again;
else
return -errno;
}
return r;
}
/* As read(), but retry on EINTR, and return the negative error code on error.
*/
static int
read_ni(int fd, void *buf, size_t n)
{
int r;
again:
r = (int) read(fd, buf, n);
if (r < 0) {
if (errno == EINTR)
goto again;
else
return -errno;
}
return r;
}
#endif /* defined(HAVE_EVENTFD) || defined(HAVE_PIPE) */
/** As send(), but retry on EINTR, and return the negative error code on
* error. */
static int
send_ni(int fd, const void *buf, size_t n, int flags)
{
int r;
again:
r = (int) send(fd, buf, n, flags);
if (r < 0) {
int error = tor_socket_errno(fd);
if (ERRNO_IS_EINTR(error))
goto again;
else
return -error;
}
return r;
}
/** As recv(), but retry on EINTR, and return the negative error code on
* error. */
static int
recv_ni(int fd, void *buf, size_t n, int flags)
{
int r;
again:
r = (int) recv(fd, buf, n, flags);
if (r < 0) {
int error = tor_socket_errno(fd);
if (ERRNO_IS_EINTR(error))
goto again;
else
return -error;
}
return r;
}
#ifdef HAVE_EVENTFD
/* Increment the event count on an eventfd <b>fd</b> */
static int
eventfd_alert(int fd)
{
uint64_t u = 1;
int r = write_ni(fd, (void*)&u, sizeof(u));
if (r < 0 && -r != EAGAIN)
return -1;
return 0;
}
/* Drain all events from an eventfd <b>fd</b>. */
static int
eventfd_drain(int fd)
{
uint64_t u = 0;
int r = read_ni(fd, (void*)&u, sizeof(u));
if (r < 0 && -r != EAGAIN)
return r;
return 0;
}
#endif /* defined(HAVE_EVENTFD) */
#ifdef HAVE_PIPE
/** Send a byte over a pipe. Return 0 on success or EAGAIN; -1 on error */
static int
pipe_alert(int fd)
{
ssize_t r = write_ni(fd, "x", 1);
if (r < 0 && -r != EAGAIN)
return (int)r;
return 0;
}
/** Drain all input from a pipe <b>fd</b> and ignore it. Return 0 on
* success, -1 on error. */
static int
pipe_drain(int fd)
{
char buf[32];
ssize_t r;
do {
r = read_ni(fd, buf, sizeof(buf));
} while (r > 0);
if (r < 0 && errno != EAGAIN)
return -errno;
/* A value of r = 0 means EOF on the fd so successfully drained. */
return 0;
}
#endif /* defined(HAVE_PIPE) */
/** Send a byte on socket <b>fd</b>t. Return 0 on success or EAGAIN,
* -1 on error. */
static int
sock_alert(tor_socket_t fd)
{
ssize_t r = send_ni(fd, "x", 1, 0);
if (r < 0 && !ERRNO_IS_EAGAIN(-r))
return (int)r;
return 0;
}
/** Drain all the input from a socket <b>fd</b>, and ignore it. Return 0 on
* success, -errno on error. */
static int
sock_drain(tor_socket_t fd)
{
char buf[32];
ssize_t r;
do {
r = recv_ni(fd, buf, sizeof(buf), 0);
} while (r > 0);
if (r < 0 && !ERRNO_IS_EAGAIN(-r))
return (int)r;
/* A value of r = 0 means EOF on the fd so successfully drained. */
return 0;
}
/** Allocate a new set of alert sockets, and set the appropriate function
* pointers, in <b>socks_out</b>. */
int
alert_sockets_create(alert_sockets_t *socks_out, uint32_t flags)
{
tor_socket_t socks[2] = { TOR_INVALID_SOCKET, TOR_INVALID_SOCKET };
#ifdef HAVE_EVENTFD
/* First, we try the Linux eventfd() syscall. This gives a 64-bit counter
* associated with a single file descriptor. */
#if defined(EFD_CLOEXEC) && defined(EFD_NONBLOCK)
if (!(flags & ASOCKS_NOEVENTFD2))
socks[0] = eventfd(0, EFD_CLOEXEC|EFD_NONBLOCK);
#endif
if (socks[0] < 0 && !(flags & ASOCKS_NOEVENTFD)) {
socks[0] = eventfd(0,0);
if (socks[0] >= 0) {
if (fcntl(socks[0], F_SETFD, FD_CLOEXEC) < 0 ||
set_socket_nonblocking(socks[0]) < 0) {
// LCOV_EXCL_START -- if eventfd succeeds, fcntl will.
tor_assert_nonfatal_unreached();
close(socks[0]);
return -1;
// LCOV_EXCL_STOP
}
}
}
if (socks[0] >= 0) {
socks_out->read_fd = socks_out->write_fd = socks[0];
socks_out->alert_fn = eventfd_alert;
socks_out->drain_fn = eventfd_drain;
return 0;
}
#endif /* defined(HAVE_EVENTFD) */
#ifdef HAVE_PIPE2
/* Now we're going to try pipes. First type the pipe2() syscall, if we
* have it, so we can save some calls... */
if (!(flags & ASOCKS_NOPIPE2) &&
pipe2(socks, O_NONBLOCK|O_CLOEXEC) == 0) {
socks_out->read_fd = socks[0];
socks_out->write_fd = socks[1];
socks_out->alert_fn = pipe_alert;
socks_out->drain_fn = pipe_drain;
return 0;
}
#endif /* defined(HAVE_PIPE2) */
#ifdef HAVE_PIPE
/* Now try the regular pipe() syscall. Pipes have a bit lower overhead than
* socketpairs, fwict. */
if (!(flags & ASOCKS_NOPIPE) &&
pipe(socks) == 0) {
if (fcntl(socks[0], F_SETFD, FD_CLOEXEC) < 0 ||
fcntl(socks[1], F_SETFD, FD_CLOEXEC) < 0 ||
set_socket_nonblocking(socks[0]) < 0 ||
set_socket_nonblocking(socks[1]) < 0) {
// LCOV_EXCL_START -- if pipe succeeds, you can fcntl the output
tor_assert_nonfatal_unreached();
close(socks[0]);
close(socks[1]);
return -1;
// LCOV_EXCL_STOP
}
socks_out->read_fd = socks[0];
socks_out->write_fd = socks[1];
socks_out->alert_fn = pipe_alert;
socks_out->drain_fn = pipe_drain;
return 0;
}
#endif /* defined(HAVE_PIPE) */
/* If nothing else worked, fall back on socketpair(). */
if (!(flags & ASOCKS_NOSOCKETPAIR) &&
tor_socketpair(AF_UNIX, SOCK_STREAM, 0, socks) == 0) {
if (set_socket_nonblocking(socks[0]) < 0 ||
set_socket_nonblocking(socks[1])) {
// LCOV_EXCL_START -- if socketpair worked, you can make it nonblocking.
tor_assert_nonfatal_unreached();
tor_close_socket(socks[0]);
tor_close_socket(socks[1]);
return -1;
// LCOV_EXCL_STOP
}
socks_out->read_fd = socks[0];
socks_out->write_fd = socks[1];
socks_out->alert_fn = sock_alert;
socks_out->drain_fn = sock_drain;
return 0;
}
return -1;
}
/** Close the sockets in <b>socks</b>. */
void
alert_sockets_close(alert_sockets_t *socks)
{
if (socks->alert_fn == sock_alert) {
/* they are sockets. */
tor_close_socket(socks->read_fd);
tor_close_socket(socks->write_fd);
} else {
close(socks->read_fd);
if (socks->write_fd != socks->read_fd)
close(socks->write_fd);
}
socks->read_fd = socks->write_fd = -1;
}
#ifndef HAVE_STDATOMIC_H
/** Initialize a new atomic counter with the value 0 */
void
atomic_counter_init(atomic_counter_t *counter)
{
memset(counter, 0, sizeof(*counter));
tor_mutex_init_nonrecursive(&counter->mutex);
}
/** Clean up all resources held by an atomic counter. */
void
atomic_counter_destroy(atomic_counter_t *counter)
{
tor_mutex_uninit(&counter->mutex);
memset(counter, 0, sizeof(*counter));
}
/** Add a value to an atomic counter. */
void
atomic_counter_add(atomic_counter_t *counter, size_t add)
{
tor_mutex_acquire(&counter->mutex);
counter->val += add;
tor_mutex_release(&counter->mutex);
}
/** Subtract a value from an atomic counter. */
void
atomic_counter_sub(atomic_counter_t *counter, size_t sub)
{
// this relies on unsigned overflow, but that's fine.
atomic_counter_add(counter, -sub);
}
/** Return the current value of an atomic counter */
size_t
atomic_counter_get(atomic_counter_t *counter)
{
size_t val;
tor_mutex_acquire(&counter->mutex);
val = counter->val;
tor_mutex_release(&counter->mutex);
return val;
}
/** Replace the value of an atomic counter; return the old one. */
size_t
atomic_counter_exchange(atomic_counter_t *counter, size_t newval)
{
size_t oldval;
tor_mutex_acquire(&counter->mutex);
oldval = counter->val;
counter->val = newval;
tor_mutex_release(&counter->mutex);
return oldval;
}
#endif /* !defined(HAVE_STDATOMIC_H) */