tor/src/test/ed25519_exts_ref.py

263 lines
8.6 KiB
Python

#!/usr/bin/python
# Copyright 2014-2017, The Tor Project, Inc
# See LICENSE for licensing information
"""
Reference implementations for the ed25519 tweaks that Tor uses.
Includes self-tester and test vector generator.
"""
import slow_ed25519
from slow_ed25519 import *
import os
import random
import slownacl_curve25519
import unittest
import binascii
import textwrap
#define a synonym that doesn't look like 1
ell = l
# This replaces expmod above and makes it go a lot faster.
slow_ed25519.expmod = pow
def curve25519ToEd25519(c, sign):
u = decodeint(c)
y = ((u - 1) * inv(u + 1)) % q
x = xrecover(y)
if x & 1 != sign: x = q-x
return encodepoint([x,y])
def blindESK(esk, param):
mult = 2**(b-2) + sum(2**i * bit(param,i) for i in range(3,b-2))
s = decodeint(esk[:32])
s_prime = (s * mult) % ell
k = esk[32:]
assert(len(k) == 32)
k_prime = H("Derive temporary signing key hash input" + k)[:32]
return encodeint(s_prime) + k_prime
def blindPK(pk, param):
mult = 2**(b-2) + sum(2**i * bit(param,i) for i in range(3,b-2))
P = decodepoint(pk)
return encodepoint(scalarmult(P, mult))
def expandSK(sk):
h = H(sk)
a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
k = ''.join([h[i] for i in range(b/8,b/4)])
assert len(k) == 32
return encodeint(a)+k
def publickeyFromESK(h):
a = decodeint(h[:32])
A = scalarmult(B,a)
return encodepoint(A)
def signatureWithESK(m,h,pk):
a = decodeint(h[:32])
r = Hint(''.join([h[i] for i in range(b/8,b/4)]) + m)
R = scalarmult(B,r)
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
return encodepoint(R) + encodeint(S)
def newSK():
return os.urandom(32)
def random_scalar(entropy_f): # 0..L-1 inclusive
# reduce the bias to a safe level by generating 256 extra bits
oversized = int(binascii.hexlify(entropy_f(32+32)), 16)
return oversized % ell
# ------------------------------------------------------------
MSG = "This is extremely silly. But it is also incredibly serious business!"
class SelfTest(unittest.TestCase):
def _testSignatures(self, esk, pk):
sig = signatureWithESK(MSG, esk, pk)
checkvalid(sig, MSG, pk)
bad = False
try:
checkvalid(sig, MSG*2, pk)
bad = True
except Exception:
pass
self.failIf(bad)
def testExpand(self):
sk = newSK()
pk = publickey(sk)
esk = expandSK(sk)
sig1 = signature(MSG, sk, pk)
sig2 = signatureWithESK(MSG, esk, pk)
self.assertEquals(sig1, sig2)
def testSignatures(self):
sk = newSK()
esk = expandSK(sk)
pk = publickeyFromESK(esk)
pk2 = publickey(sk)
self.assertEquals(pk, pk2)
self._testSignatures(esk, pk)
def testDerivation(self):
priv = slownacl_curve25519.Private()
pub = priv.get_public()
ed_pub0 = publickeyFromESK(priv.private)
sign = (ord(ed_pub0[31]) & 255) >> 7
ed_pub1 = curve25519ToEd25519(pub.public, sign)
self.assertEquals(ed_pub0, ed_pub1)
def testBlinding(self):
sk = newSK()
esk = expandSK(sk)
pk = publickeyFromESK(esk)
param = os.urandom(32)
besk = blindESK(esk, param)
bpk = blindPK(pk, param)
bpk2 = publickeyFromESK(besk)
self.assertEquals(bpk, bpk2)
self._testSignatures(besk, bpk)
def testIdentity(self):
# Base point:
# B is the unique point (x, 4/5) \in E for which x is positive
By = 4 * inv(5)
Bx = xrecover(By)
B = [Bx % q,By % q]
# Get identity E by doing: E = l*B, where l is the group order
identity = scalarmult(B, ell)
# Get identity E by doing: E = l*A, where A is a random point
sk = newSK()
pk = decodepoint(publickey(sk))
identity2 = scalarmult(pk, ell)
# Check that identities match
assert(identity == identity2)
# Check that identity is the point (0,1)
assert(identity == [0L,1L])
# Check identity element: a*E = E, where a is a random scalar
scalar = random_scalar(os.urandom)
result = scalarmult(identity, scalar)
assert(result == identity == identity2)
# ------------------------------------------------------------
# From pprint.pprint([ binascii.b2a_hex(os.urandom(32)) for _ in xrange(8) ])
RAND_INPUTS = [
'26c76712d89d906e6672dafa614c42e5cb1caac8c6568e4d2493087db51f0d36',
'fba7a5366b5cb98c2667a18783f5cf8f4f8d1a2ce939ad22a6e685edde85128d',
'67e3aa7a14fac8445d15e45e38a523481a69ae35513c9e4143eb1c2196729a0e',
'd51385942033a76dc17f089a59e6a5a7fe80d9c526ae8ddd8c3a506b99d3d0a6',
'5c8eac469bb3f1b85bc7cd893f52dc42a9ab66f1b02b5ce6a68e9b175d3bb433',
'eda433d483059b6d1ff8b7cfbd0fe406bfb23722c8f3c8252629284573b61b86',
'4377c40431c30883c5fbd9bc92ae48d1ed8a47b81d13806beac5351739b5533d',
'c6bbcce615839756aed2cc78b1de13884dd3618f48367a17597a16c1cd7a290b']
# From pprint.pprint([ binascii.b2a_hex(os.urandom(32)) for _ in xrange(8) ])
BLINDING_PARAMS = [
'54a513898b471d1d448a2f3c55c1de2c0ef718c447b04497eeb999ed32027823',
'831e9b5325b5d31b7ae6197e9c7a7baf2ec361e08248bce055908971047a2347',
'ac78a1d46faf3bfbbdc5af5f053dc6dc9023ed78236bec1760dadfd0b2603760',
'f9c84dc0ac31571507993df94da1b3d28684a12ad14e67d0a068aba5c53019fc',
'b1fe79d1dec9bc108df69f6612c72812755751f21ecc5af99663b30be8b9081f',
'81f1512b63ab5fb5c1711a4ec83d379c420574aedffa8c3368e1c3989a3a0084',
'97f45142597c473a4b0e9a12d64561133ad9e1155fe5a9807fe6af8a93557818',
'3f44f6a5a92cde816635dfc12ade70539871078d2ff097278be2a555c9859cd0']
PREFIX = "ED25519_"
def writeArray(name, array):
print "static const char *{prefix}{name}[] = {{".format(
prefix=PREFIX,name=name)
for a in array:
h = binascii.b2a_hex(a)
if len(h) > 70:
h1 = h[:70]
h2 = h[70:]
print ' "{0}"\n "{1}",'.format(h1,h2)
else:
print ' "{0}",'.format(h)
print "};\n"
def comment(text, initial="/**"):
print initial
print textwrap.fill(text,initial_indent=" * ",subsequent_indent=" * ")
print " */"
def makeTestVectors():
comment("""Test vectors for our ed25519 implementation and related
functions. These were automatically generated by the
ed25519_exts_ref.py script.""", initial="/*")
comment("""Secret key seeds used as inputs for the ed25519 test vectors.
Randomly generated. """)
secretKeys = [ binascii.a2b_hex(r) for r in RAND_INPUTS ]
writeArray("SECRET_KEYS", secretKeys)
comment("""Secret ed25519 keys after expansion from seeds. This is how Tor
represents them internally.""")
expandedSecretKeys = [ expandSK(sk) for sk in secretKeys ]
writeArray("EXPANDED_SECRET_KEYS", expandedSecretKeys)
comment("""Public keys derived from the above secret keys""")
publicKeys = [ publickey(sk) for sk in secretKeys ]
writeArray("PUBLIC_KEYS", publicKeys)
comment("""The curve25519 public keys from which the ed25519 keys can be
derived. Used to test our 'derive ed25519 from curve25519'
code.""")
writeArray("CURVE25519_PUBLIC_KEYS",
(slownacl_curve25519.smult_curve25519_base(sk[:32])
for sk in expandedSecretKeys))
comment("""Parameters used for key blinding tests. Randomly generated.""")
blindingParams = [ binascii.a2b_hex(r) for r in BLINDING_PARAMS ]
writeArray("BLINDING_PARAMS", blindingParams)
comment("""Blinded secret keys for testing key blinding. The nth blinded
key corresponds to the nth secret key blidned with the nth
blinding parameter.""")
writeArray("BLINDED_SECRET_KEYS",
(blindESK(expandSK(sk), bp)
for sk,bp in zip(secretKeys,blindingParams)))
comment("""Blinded public keys for testing key blinding. The nth blinded
key corresponds to the nth public key blidned with the nth
blinding parameter.""")
writeArray("BLINDED_PUBLIC_KEYS",
(blindPK(pk, bp) for pk,bp in zip(publicKeys,blindingParams)))
comment("""Signatures of the public keys, made with their corresponding
secret keys.""")
writeArray("SELF_SIGNATURES",
(signature(pk, sk, pk) for pk,sk in zip(publicKeys,secretKeys)))
if __name__ == '__main__':
import sys
if len(sys.argv) == 1 or sys.argv[1] not in ("SelfTest", "MakeVectors"):
print "You should specify one of 'SelfTest' or 'MakeVectors'"
sys.exit(1)
if sys.argv[1] == 'SelfTest':
unittest.main()
else:
makeTestVectors()