tor/src/common/address.c

2093 lines
61 KiB
C

/* Copyright (c) 2003-2004, Roger Dingledine
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2016, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file address.c
* \brief Functions to use and manipulate the tor_addr_t structure.
**/
#define ADDRESS_PRIVATE
#include "orconfig.h"
#ifdef _WIN32
/* For access to structs needed by GetAdaptersAddresses */
#ifndef WIN32_LEAN_AND_MEAN
#error "orconfig.h didn't define WIN32_LEAN_AND_MEAN"
#endif
#ifndef WINVER
#error "orconfig.h didn't define WINVER"
#endif
#ifndef _WIN32_WINNT
#error "orconfig.h didn't define _WIN32_WINNT"
#endif
#if WINVER < 0x0501
#error "winver too low"
#endif
#if _WIN32_WINNT < 0x0501
#error "winver too low"
#endif
#include <winsock2.h>
#include <process.h>
#include <windows.h>
#include <iphlpapi.h>
#endif
#include "compat.h"
#include "util.h"
#include "util_format.h"
#include "address.h"
#include "torlog.h"
#include "container.h"
#include "sandbox.h"
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#ifdef HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#ifdef HAVE_NETDB_H
#include <netdb.h>
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h> /* FreeBSD needs this to know what version it is */
#endif
#ifdef HAVE_SYS_UN_H
#include <sys/un.h>
#endif
#ifdef HAVE_IFADDRS_H
#include <ifaddrs.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#ifdef HAVE_NET_IF_H
#include <net/if.h>
#endif
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
/* tor_addr_is_null() and maybe other functions rely on AF_UNSPEC being 0 to
* work correctly. Bail out here if we've found a platform where AF_UNSPEC
* isn't 0. */
#if AF_UNSPEC != 0
#error We rely on AF_UNSPEC being 0. Let us know about your platform, please!
#endif
/** Convert the tor_addr_t in <b>a</b>, with port in <b>port</b>, into a
* sockaddr object in *<b>sa_out</b> of object size <b>len</b>. If not enough
* room is available in sa_out, or on error, return 0. On success, return
* the length of the sockaddr.
*
* Interface note: ordinarily, we return -1 for error. We can't do that here,
* since socklen_t is unsigned on some platforms.
**/
socklen_t
tor_addr_to_sockaddr(const tor_addr_t *a,
uint16_t port,
struct sockaddr *sa_out,
socklen_t len)
{
memset(sa_out, 0, len);
sa_family_t family = tor_addr_family(a);
if (family == AF_INET) {
struct sockaddr_in *sin;
if (len < (int)sizeof(struct sockaddr_in))
return 0;
sin = (struct sockaddr_in *)sa_out;
#ifdef HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
sin->sin_len = sizeof(struct sockaddr_in);
#endif
sin->sin_family = AF_INET;
sin->sin_port = htons(port);
sin->sin_addr.s_addr = tor_addr_to_ipv4n(a);
return sizeof(struct sockaddr_in);
} else if (family == AF_INET6) {
struct sockaddr_in6 *sin6;
if (len < (int)sizeof(struct sockaddr_in6))
return 0;
sin6 = (struct sockaddr_in6 *)sa_out;
#ifdef HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
sin6->sin6_len = sizeof(struct sockaddr_in6);
#endif
sin6->sin6_family = AF_INET6;
sin6->sin6_port = htons(port);
memcpy(&sin6->sin6_addr, tor_addr_to_in6(a), sizeof(struct in6_addr));
return sizeof(struct sockaddr_in6);
} else {
return 0;
}
}
/** Set address <b>a</b> to zero. This address belongs to
* the AF_UNIX family. */
static void
tor_addr_make_af_unix(tor_addr_t *a)
{
memset(a, 0, sizeof(*a));
a->family = AF_UNIX;
}
/** Set the tor_addr_t in <b>a</b> to contain the socket address contained in
* <b>sa</b>. IF <b>port_out</b> is non-NULL and <b>sa</b> contains a port,
* set *<b>port_out</b> to that port. Return 0 on success and -1 on
* failure. */
int
tor_addr_from_sockaddr(tor_addr_t *a, const struct sockaddr *sa,
uint16_t *port_out)
{
tor_assert(a);
tor_assert(sa);
memset(a, 0, sizeof(*a));
if (sa->sa_family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in *) sa;
tor_addr_from_ipv4n(a, sin->sin_addr.s_addr);
if (port_out)
*port_out = ntohs(sin->sin_port);
} else if (sa->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) sa;
tor_addr_from_in6(a, &sin6->sin6_addr);
if (port_out)
*port_out = ntohs(sin6->sin6_port);
} else if (sa->sa_family == AF_UNIX) {
tor_addr_make_af_unix(a);
return 0;
} else {
tor_addr_make_unspec(a);
return -1;
}
return 0;
}
/** Return a newly allocated string holding the address described in
* <b>sa</b>. AF_UNIX, AF_UNSPEC, AF_INET, and AF_INET6 are supported. */
char *
tor_sockaddr_to_str(const struct sockaddr *sa)
{
char address[TOR_ADDR_BUF_LEN];
char *result;
tor_addr_t addr;
uint16_t port;
#ifdef HAVE_SYS_UN_H
if (sa->sa_family == AF_UNIX) {
struct sockaddr_un *s_un = (struct sockaddr_un *)sa;
tor_asprintf(&result, "unix:%s", s_un->sun_path);
return result;
}
#endif
if (sa->sa_family == AF_UNSPEC)
return tor_strdup("unspec");
if (tor_addr_from_sockaddr(&addr, sa, &port) < 0)
return NULL;
if (! tor_addr_to_str(address, &addr, sizeof(address), 1))
return NULL;
tor_asprintf(&result, "%s:%d", address, (int)port);
return result;
}
/** Set address <b>a</b> to the unspecified address. This address belongs to
* no family. */
void
tor_addr_make_unspec(tor_addr_t *a)
{
memset(a, 0, sizeof(*a));
a->family = AF_UNSPEC;
}
/** Set address <b>a</b> to the null address in address family <b>family</b>.
* The null address for AF_INET is 0.0.0.0. The null address for AF_INET6 is
* [::]. AF_UNSPEC is all null. */
void
tor_addr_make_null(tor_addr_t *a, sa_family_t family)
{
memset(a, 0, sizeof(*a));
a->family = family;
}
/** Similar behavior to Unix gethostbyname: resolve <b>name</b>, and set
* *<b>addr</b> to the proper IP address and family. The <b>family</b>
* argument (which must be AF_INET, AF_INET6, or AF_UNSPEC) declares a
* <i>preferred</i> family, though another one may be returned if only one
* family is implemented for this address.
*
* Return 0 on success, -1 on failure; 1 on transient failure.
*/
int
tor_addr_lookup(const char *name, uint16_t family, tor_addr_t *addr)
{
/* Perhaps eventually this should be replaced by a tor_getaddrinfo or
* something.
*/
struct in_addr iaddr;
struct in6_addr iaddr6;
tor_assert(name);
tor_assert(addr);
tor_assert(family == AF_INET || family == AF_INET6 || family == AF_UNSPEC);
if (!*name) {
/* Empty address is an error. */
return -1;
} else if (tor_inet_pton(AF_INET, name, &iaddr)) {
/* It's an IPv4 IP. */
if (family == AF_INET6)
return -1;
tor_addr_from_in(addr, &iaddr);
return 0;
} else if (tor_inet_pton(AF_INET6, name, &iaddr6)) {
if (family == AF_INET)
return -1;
tor_addr_from_in6(addr, &iaddr6);
return 0;
} else {
#ifdef HAVE_GETADDRINFO
int err;
struct addrinfo *res=NULL, *res_p;
struct addrinfo *best=NULL;
struct addrinfo hints;
int result = -1;
memset(&hints, 0, sizeof(hints));
hints.ai_family = family;
hints.ai_socktype = SOCK_STREAM;
err = sandbox_getaddrinfo(name, NULL, &hints, &res);
/* The check for 'res' here shouldn't be necessary, but it makes static
* analysis tools happy. */
if (!err && res) {
best = NULL;
for (res_p = res; res_p; res_p = res_p->ai_next) {
if (family == AF_UNSPEC) {
if (res_p->ai_family == AF_INET) {
best = res_p;
break;
} else if (res_p->ai_family == AF_INET6 && !best) {
best = res_p;
}
} else if (family == res_p->ai_family) {
best = res_p;
break;
}
}
if (!best)
best = res;
if (best->ai_family == AF_INET) {
tor_addr_from_in(addr,
&((struct sockaddr_in*)best->ai_addr)->sin_addr);
result = 0;
} else if (best->ai_family == AF_INET6) {
tor_addr_from_in6(addr,
&((struct sockaddr_in6*)best->ai_addr)->sin6_addr);
result = 0;
}
sandbox_freeaddrinfo(res);
return result;
}
return (err == EAI_AGAIN) ? 1 : -1;
#else
struct hostent *ent;
int err;
#ifdef HAVE_GETHOSTBYNAME_R_6_ARG
char buf[2048];
struct hostent hostent;
int r;
r = gethostbyname_r(name, &hostent, buf, sizeof(buf), &ent, &err);
#elif defined(HAVE_GETHOSTBYNAME_R_5_ARG)
char buf[2048];
struct hostent hostent;
ent = gethostbyname_r(name, &hostent, buf, sizeof(buf), &err);
#elif defined(HAVE_GETHOSTBYNAME_R_3_ARG)
struct hostent_data data;
struct hostent hent;
memset(&data, 0, sizeof(data));
err = gethostbyname_r(name, &hent, &data);
ent = err ? NULL : &hent;
#else
ent = gethostbyname(name);
#ifdef _WIN32
err = WSAGetLastError();
#else
err = h_errno;
#endif
#endif /* endif HAVE_GETHOSTBYNAME_R_6_ARG. */
if (ent) {
if (ent->h_addrtype == AF_INET) {
tor_addr_from_in(addr, (struct in_addr*) ent->h_addr);
} else if (ent->h_addrtype == AF_INET6) {
tor_addr_from_in6(addr, (struct in6_addr*) ent->h_addr);
} else {
tor_assert(0); /* gethostbyname() returned a bizarre addrtype */
}
return 0;
}
#ifdef _WIN32
return (err == WSATRY_AGAIN) ? 1 : -1;
#else
return (err == TRY_AGAIN) ? 1 : -1;
#endif
#endif
}
}
/** Return true iff <b>ip</b> is an IP reserved to localhost or local networks
* in RFC1918 or RFC4193 or RFC4291. (fec0::/10, deprecated by RFC3879, is
* also treated as internal for now.)
*/
int
tor_addr_is_internal_(const tor_addr_t *addr, int for_listening,
const char *filename, int lineno)
{
uint32_t iph4 = 0;
uint32_t iph6[4];
tor_assert(addr);
sa_family_t v_family = tor_addr_family(addr);
if (v_family == AF_INET) {
iph4 = tor_addr_to_ipv4h(addr);
} else if (v_family == AF_INET6) {
if (tor_addr_is_v4(addr)) { /* v4-mapped */
uint32_t *addr32 = NULL;
v_family = AF_INET;
// Work around an incorrect NULL pointer dereference warning in
// "clang --analyze" due to limited analysis depth
addr32 = tor_addr_to_in6_addr32(addr);
// To improve performance, wrap this assertion in:
// #if !defined(__clang_analyzer__) || PARANOIA
tor_assert(addr32);
iph4 = ntohl(addr32[3]);
}
}
if (v_family == AF_INET6) {
const uint32_t *a32 = tor_addr_to_in6_addr32(addr);
iph6[0] = ntohl(a32[0]);
iph6[1] = ntohl(a32[1]);
iph6[2] = ntohl(a32[2]);
iph6[3] = ntohl(a32[3]);
if (for_listening && !iph6[0] && !iph6[1] && !iph6[2] && !iph6[3]) /* :: */
return 0;
if (((iph6[0] & 0xfe000000) == 0xfc000000) || /* fc00/7 - RFC4193 */
((iph6[0] & 0xffc00000) == 0xfe800000) || /* fe80/10 - RFC4291 */
((iph6[0] & 0xffc00000) == 0xfec00000)) /* fec0/10 D- RFC3879 */
return 1;
if (!iph6[0] && !iph6[1] && !iph6[2] &&
((iph6[3] & 0xfffffffe) == 0x00000000)) /* ::/127 */
return 1;
return 0;
} else if (v_family == AF_INET) {
if (for_listening && !iph4) /* special case for binding to 0.0.0.0 */
return 0;
if (((iph4 & 0xff000000) == 0x0a000000) || /* 10/8 */
((iph4 & 0xff000000) == 0x00000000) || /* 0/8 */
((iph4 & 0xff000000) == 0x7f000000) || /* 127/8 */
((iph4 & 0xffff0000) == 0xa9fe0000) || /* 169.254/16 */
((iph4 & 0xfff00000) == 0xac100000) || /* 172.16/12 */
((iph4 & 0xffff0000) == 0xc0a80000)) /* 192.168/16 */
return 1;
return 0;
}
/* unknown address family... assume it's not safe for external use */
/* rather than tor_assert(0) */
log_warn(LD_BUG, "tor_addr_is_internal() called from %s:%d with a "
"non-IP address of type %d", filename, lineno, (int)v_family);
tor_fragile_assert();
return 1;
}
/** Convert a tor_addr_t <b>addr</b> into a string, and store it in
* <b>dest</b> of size <b>len</b>. Returns a pointer to dest on success,
* or NULL on failure. If <b>decorate</b>, surround IPv6 addresses with
* brackets.
*/
const char *
tor_addr_to_str(char *dest, const tor_addr_t *addr, size_t len, int decorate)
{
const char *ptr;
tor_assert(addr && dest);
switch (tor_addr_family(addr)) {
case AF_INET:
/* Shortest addr x.x.x.x + \0 */
if (len < 8)
return NULL;
ptr = tor_inet_ntop(AF_INET, &addr->addr.in_addr, dest, len);
break;
case AF_INET6:
/* Shortest addr [ :: ] + \0 */
if (len < (3 + (decorate ? 2 : 0)))
return NULL;
if (decorate)
ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest+1, len-2);
else
ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest, len);
if (ptr && decorate) {
*dest = '[';
memcpy(dest+strlen(dest), "]", 2);
tor_assert(ptr == dest+1);
ptr = dest;
}
break;
case AF_UNIX:
tor_snprintf(dest, len, "AF_UNIX");
ptr = dest;
break;
default:
return NULL;
}
return ptr;
}
/** Parse an .in-addr.arpa or .ip6.arpa address from <b>address</b>. Return 0
* if this is not an .in-addr.arpa address or an .ip6.arpa address. Return -1
* if this is an ill-formed .in-addr.arpa address or an .ip6.arpa address.
* Also return -1 if <b>family</b> is not AF_UNSPEC, and the parsed address
* family does not match <b>family</b>. On success, return 1, and store the
* result, if any, into <b>result</b>, if provided.
*
* If <b>accept_regular</b> is set and the address is in neither recognized
* reverse lookup hostname format, try parsing the address as a regular
* IPv4 or IPv6 address too.
*/
int
tor_addr_parse_PTR_name(tor_addr_t *result, const char *address,
int family, int accept_regular)
{
if (!strcasecmpend(address, ".in-addr.arpa")) {
/* We have an in-addr.arpa address. */
char buf[INET_NTOA_BUF_LEN];
size_t len;
struct in_addr inaddr;
if (family == AF_INET6)
return -1;
len = strlen(address) - strlen(".in-addr.arpa");
if (len >= INET_NTOA_BUF_LEN)
return -1; /* Too long. */
memcpy(buf, address, len);
buf[len] = '\0';
if (tor_inet_aton(buf, &inaddr) == 0)
return -1; /* malformed. */
/* reverse the bytes */
inaddr.s_addr = (uint32_t)
(((inaddr.s_addr & 0x000000ff) << 24)
|((inaddr.s_addr & 0x0000ff00) << 8)
|((inaddr.s_addr & 0x00ff0000) >> 8)
|((inaddr.s_addr & 0xff000000) >> 24));
if (result) {
tor_addr_from_in(result, &inaddr);
}
return 1;
}
if (!strcasecmpend(address, ".ip6.arpa")) {
const char *cp;
int n0, n1;
struct in6_addr in6;
if (family == AF_INET)
return -1;
cp = address;
for (int i = 0; i < 16; ++i) {
n0 = hex_decode_digit(*cp++); /* The low-order nybble appears first. */
if (*cp++ != '.') return -1; /* Then a dot. */
n1 = hex_decode_digit(*cp++); /* The high-order nybble appears first. */
if (*cp++ != '.') return -1; /* Then another dot. */
if (n0<0 || n1 < 0) /* Both nybbles must be hex. */
return -1;
/* We don't check the length of the string in here. But that's okay,
* since we already know that the string ends with ".ip6.arpa", and
* there is no way to frameshift .ip6.arpa so it fits into the pattern
* of hexdigit, period, hexdigit, period that we enforce above.
*/
/* Assign from low-byte to high-byte. */
in6.s6_addr[15-i] = n0 | (n1 << 4);
}
if (strcasecmp(cp, "ip6.arpa"))
return -1;
if (result) {
tor_addr_from_in6(result, &in6);
}
return 1;
}
if (accept_regular) {
tor_addr_t tmp;
int r = tor_addr_parse(&tmp, address);
if (r < 0)
return 0;
if (r != family && family != AF_UNSPEC)
return -1;
if (result)
memcpy(result, &tmp, sizeof(tor_addr_t));
return 1;
}
return 0;
}
/** Convert <b>addr</b> to an in-addr.arpa name or a .ip6.arpa name,
* and store the result in the <b>outlen</b>-byte buffer at
* <b>out</b>. Return the number of chars written to <b>out</b>, not
* including the trailing \0, on success. Returns -1 on failure. */
int
tor_addr_to_PTR_name(char *out, size_t outlen,
const tor_addr_t *addr)
{
tor_assert(out);
tor_assert(addr);
if (addr->family == AF_INET) {
uint32_t a = tor_addr_to_ipv4h(addr);
return tor_snprintf(out, outlen, "%d.%d.%d.%d.in-addr.arpa",
(int)(uint8_t)((a )&0xff),
(int)(uint8_t)((a>>8 )&0xff),
(int)(uint8_t)((a>>16)&0xff),
(int)(uint8_t)((a>>24)&0xff));
} else if (addr->family == AF_INET6) {
int i;
char *cp = out;
const uint8_t *bytes = tor_addr_to_in6_addr8(addr);
if (outlen < REVERSE_LOOKUP_NAME_BUF_LEN)
return -1;
for (i = 15; i >= 0; --i) {
uint8_t byte = bytes[i];
*cp++ = "0123456789abcdef"[byte & 0x0f];
*cp++ = '.';
*cp++ = "0123456789abcdef"[byte >> 4];
*cp++ = '.';
}
memcpy(cp, "ip6.arpa", 9); /* 8 characters plus NUL */
return 32 * 2 + 8;
}
return -1;
}
/** Parse a string <b>s</b> containing an IPv4/IPv6 address, and possibly
* a mask and port or port range. Store the parsed address in
* <b>addr_out</b>, a mask (if any) in <b>mask_out</b>, and port(s) (if any)
* in <b>port_min_out</b> and <b>port_max_out</b>.
*
* The syntax is:
* Address OptMask OptPortRange
* Address ::= IPv4Address / "[" IPv6Address "]" / "*"
* OptMask ::= "/" Integer /
* OptPortRange ::= ":*" / ":" Integer / ":" Integer "-" Integer /
*
* - If mask, minport, or maxport are NULL, we do not want these
* options to be set; treat them as an error if present.
* - If the string has no mask, the mask is set to /32 (IPv4) or /128 (IPv6).
* - If the string has one port, it is placed in both min and max port
* variables.
* - If the string has no port(s), port_(min|max)_out are set to 1 and 65535.
*
* Return an address family on success, or -1 if an invalid address string is
* provided.
*
* If 'flags & TAPMP_EXTENDED_STAR' is false, then the wildcard address '*'
* yield an IPv4 wildcard.
*
* If 'flags & TAPMP_EXTENDED_STAR' is true, then the wildcard address '*'
* yields an AF_UNSPEC wildcard address, which expands to corresponding
* wildcard IPv4 and IPv6 rules, and the following change is made
* in the grammar above:
* Address ::= IPv4Address / "[" IPv6Address "]" / "*" / "*4" / "*6"
* with the new "*4" and "*6" productions creating a wildcard to match
* IPv4 or IPv6 addresses.
*
* If 'flags & TAPMP_EXTENDED_STAR' and 'flags & TAPMP_STAR_IPV4_ONLY' are
* both true, then the wildcard address '*' yields an IPv4 wildcard.
*
* If 'flags & TAPMP_EXTENDED_STAR' and 'flags & TAPMP_STAR_IPV6_ONLY' are
* both true, then the wildcard address '*' yields an IPv6 wildcard.
*
* TAPMP_STAR_IPV4_ONLY and TAPMP_STAR_IPV6_ONLY are mutually exclusive. */
int
tor_addr_parse_mask_ports(const char *s,
unsigned flags,
tor_addr_t *addr_out,
maskbits_t *maskbits_out,
uint16_t *port_min_out, uint16_t *port_max_out)
{
char *base = NULL, *address, *mask = NULL, *port = NULL, *rbracket = NULL;
char *endptr;
int any_flag=0, v4map=0;
sa_family_t family;
struct in6_addr in6_tmp;
struct in_addr in_tmp = { .s_addr = 0 };
tor_assert(s);
tor_assert(addr_out);
/* We can either only want an IPv4 address or only want an IPv6 address,
* but we can't only want IPv4 & IPv6 at the same time. */
tor_assert(!((flags & TAPMP_STAR_IPV4_ONLY)
&& (flags & TAPMP_STAR_IPV6_ONLY)));
/** Longest possible length for an address, mask, and port-range combination.
* Includes IP, [], /mask, :, ports */
#define MAX_ADDRESS_LENGTH (TOR_ADDR_BUF_LEN+2+(1+INET_NTOA_BUF_LEN)+12+1)
if (strlen(s) > MAX_ADDRESS_LENGTH) {
log_warn(LD_GENERAL, "Impossibly long IP %s; rejecting", escaped(s));
goto err;
}
base = tor_strdup(s);
/* Break 'base' into separate strings. */
address = base;
if (*address == '[') { /* Probably IPv6 */
address++;
rbracket = strchr(address, ']');
if (!rbracket) {
log_warn(LD_GENERAL,
"No closing IPv6 bracket in address pattern; rejecting.");
goto err;
}
}
mask = strchr((rbracket?rbracket:address),'/');
port = strchr((mask?mask:(rbracket?rbracket:address)), ':');
if (port)
*port++ = '\0';
if (mask)
*mask++ = '\0';
if (rbracket)
*rbracket = '\0';
if (port && mask)
tor_assert(port > mask);
if (mask && rbracket)
tor_assert(mask > rbracket);
/* Now "address" is the a.b.c.d|'*'|abcd::1 part...
* "mask" is the Mask|Maskbits part...
* and "port" is the *|port|min-max part.
*/
/* Process the address portion */
memset(addr_out, 0, sizeof(tor_addr_t));
if (!strcmp(address, "*")) {
if (flags & TAPMP_EXTENDED_STAR) {
if (flags & TAPMP_STAR_IPV4_ONLY) {
family = AF_INET;
tor_addr_from_ipv4h(addr_out, 0);
} else if (flags & TAPMP_STAR_IPV6_ONLY) {
static char nil_bytes[16] = { [0]=0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
family = AF_INET6;
tor_addr_from_ipv6_bytes(addr_out, nil_bytes);
} else {
family = AF_UNSPEC;
tor_addr_make_unspec(addr_out);
log_info(LD_GENERAL,
"'%s' expands into rules which apply to all IPv4 and IPv6 "
"addresses. (Use accept/reject *4:* for IPv4 or "
"accept[6]/reject[6] *6:* for IPv6.)", s);
}
} else {
family = AF_INET;
tor_addr_from_ipv4h(addr_out, 0);
}
any_flag = 1;
} else if (!strcmp(address, "*4") && (flags & TAPMP_EXTENDED_STAR)) {
family = AF_INET;
tor_addr_from_ipv4h(addr_out, 0);
any_flag = 1;
} else if (!strcmp(address, "*6") && (flags & TAPMP_EXTENDED_STAR)) {
static char nil_bytes[16] = { [0]=0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
family = AF_INET6;
tor_addr_from_ipv6_bytes(addr_out, nil_bytes);
any_flag = 1;
} else if (tor_inet_pton(AF_INET6, address, &in6_tmp) > 0) {
family = AF_INET6;
tor_addr_from_in6(addr_out, &in6_tmp);
} else if (tor_inet_pton(AF_INET, address, &in_tmp) > 0) {
family = AF_INET;
tor_addr_from_in(addr_out, &in_tmp);
} else {
log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
escaped(address));
goto err;
}
v4map = tor_addr_is_v4(addr_out);
/* Parse mask */
if (maskbits_out) {
int bits = 0;
struct in_addr v4mask;
if (mask) { /* the caller (tried to) specify a mask */
bits = (int) strtol(mask, &endptr, 10);
if (!*endptr) { /* strtol converted everything, so it was an integer */
if ((bits<0 || bits>128) ||
(family == AF_INET && bits > 32)) {
log_warn(LD_GENERAL,
"Bad number of mask bits (%d) on address range; rejecting.",
bits);
goto err;
}
} else { /* mask might still be an address-style mask */
if (tor_inet_pton(AF_INET, mask, &v4mask) > 0) {
bits = addr_mask_get_bits(ntohl(v4mask.s_addr));
if (bits < 0) {
log_warn(LD_GENERAL,
"IPv4-style mask %s is not a prefix address; rejecting.",
escaped(mask));
goto err;
}
} else { /* Not IPv4; we don't do address-style IPv6 masks. */
log_warn(LD_GENERAL,
"Malformed mask on address range %s; rejecting.",
escaped(s));
goto err;
}
}
if (family == AF_INET6 && v4map) {
if (bits > 32 && bits < 96) { /* Crazy */
log_warn(LD_GENERAL,
"Bad mask bits %d for V4-mapped V6 address; rejecting.",
bits);
goto err;
}
/* XXXX_IP6 is this really what we want? */
bits = 96 + bits%32; /* map v4-mapped masks onto 96-128 bits */
}
if (any_flag) {
log_warn(LD_GENERAL,
"Found bit prefix with wildcard address; rejecting");
goto err;
}
} else { /* pick an appropriate mask, as none was given */
if (any_flag)
bits = 0; /* This is okay whether it's V6 or V4 (FIX V4-mapped V6!) */
else if (tor_addr_family(addr_out) == AF_INET)
bits = 32;
else if (tor_addr_family(addr_out) == AF_INET6)
bits = 128;
}
*maskbits_out = (maskbits_t) bits;
} else {
if (mask) {
log_warn(LD_GENERAL,
"Unexpected mask in address %s; rejecting", escaped(s));
goto err;
}
}
/* Parse port(s) */
if (port_min_out) {
uint16_t port2;
if (!port_max_out) /* caller specified one port; fake the second one */
port_max_out = &port2;
if (parse_port_range(port, port_min_out, port_max_out) < 0) {
goto err;
} else if ((*port_min_out != *port_max_out) && port_max_out == &port2) {
log_warn(LD_GENERAL,
"Wanted one port from address range, but there are two.");
port_max_out = NULL; /* caller specified one port, so set this back */
goto err;
}
} else {
if (port) {
log_warn(LD_GENERAL,
"Unexpected ports in address %s; rejecting", escaped(s));
goto err;
}
}
tor_free(base);
return tor_addr_family(addr_out);
err:
tor_free(base);
return -1;
}
/** Determine whether an address is IPv4, either native or IPv4-mapped IPv6.
* Note that this is about representation only, as any decent stack will
* reject IPv4-mapped addresses received on the wire (and won't use them
* on the wire either).
*/
int
tor_addr_is_v4(const tor_addr_t *addr)
{
tor_assert(addr);
if (tor_addr_family(addr) == AF_INET)
return 1;
if (tor_addr_family(addr) == AF_INET6) {
/* First two don't need to be ordered */
uint32_t *a32 = tor_addr_to_in6_addr32(addr);
if (a32[0] == 0 && a32[1] == 0 && ntohl(a32[2]) == 0x0000ffffu)
return 1;
}
return 0; /* Not IPv4 - unknown family or a full-blood IPv6 address */
}
/** Determine whether an address <b>addr</b> is null, either all zeroes or
* belonging to family AF_UNSPEC.
*/
int
tor_addr_is_null(const tor_addr_t *addr)
{
tor_assert(addr);
switch (tor_addr_family(addr)) {
case AF_INET6: {
uint32_t *a32 = tor_addr_to_in6_addr32(addr);
return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 0);
}
case AF_INET:
return (tor_addr_to_ipv4n(addr) == 0);
case AF_UNIX:
return 1;
case AF_UNSPEC:
return 1;
default:
log_warn(LD_BUG, "Called with unknown address family %d",
(int)tor_addr_family(addr));
return 0;
}
//return 1;
}
/** Return true iff <b>addr</b> is a loopback address */
int
tor_addr_is_loopback(const tor_addr_t *addr)
{
tor_assert(addr);
switch (tor_addr_family(addr)) {
case AF_INET6: {
/* ::1 */
uint32_t *a32 = tor_addr_to_in6_addr32(addr);
return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) &&
(ntohl(a32[3]) == 1);
}
case AF_INET:
/* 127.0.0.1 */
return (tor_addr_to_ipv4h(addr) & 0xff000000) == 0x7f000000;
case AF_UNSPEC:
return 0;
default:
tor_fragile_assert();
return 0;
}
}
/* Is addr valid?
* Checks that addr is non-NULL and not tor_addr_is_null().
* If for_listening is true, IPv4 addr 0.0.0.0 is allowed.
* It means "bind to all addresses on the local machine". */
int
tor_addr_is_valid(const tor_addr_t *addr, int for_listening)
{
/* NULL addresses are invalid regardless of for_listening */
if (addr == NULL) {
return 0;
}
/* Only allow IPv4 0.0.0.0 for_listening. */
if (for_listening && addr->family == AF_INET
&& tor_addr_to_ipv4h(addr) == 0) {
return 1;
}
/* Otherwise, the address is valid if it's not tor_addr_is_null() */
return !tor_addr_is_null(addr);
}
/* Is the network-order IPv4 address v4n_addr valid?
* Checks that addr is not zero.
* Except if for_listening is true, where IPv4 addr 0.0.0.0 is allowed. */
int
tor_addr_is_valid_ipv4n(uint32_t v4n_addr, int for_listening)
{
/* Any IPv4 address is valid with for_listening. */
if (for_listening) {
return 1;
}
/* Otherwise, zero addresses are invalid. */
return v4n_addr != 0;
}
/* Is port valid?
* Checks that port is not 0.
* Except if for_listening is true, where port 0 is allowed.
* It means "OS chooses a port". */
int
tor_port_is_valid(uint16_t port, int for_listening)
{
/* Any port value is valid with for_listening. */
if (for_listening) {
return 1;
}
/* Otherwise, zero ports are invalid. */
return port != 0;
}
/** Set <b>dest</b> to equal the IPv4 address in <b>v4addr</b> (given in
* network order). */
void
tor_addr_from_ipv4n(tor_addr_t *dest, uint32_t v4addr)
{
tor_assert(dest);
memset(dest, 0, sizeof(tor_addr_t));
dest->family = AF_INET;
dest->addr.in_addr.s_addr = v4addr;
}
/** Set <b>dest</b> to equal the IPv6 address in the 16 bytes at
* <b>ipv6_bytes</b>. */
void
tor_addr_from_ipv6_bytes(tor_addr_t *dest, const char *ipv6_bytes)
{
tor_assert(dest);
tor_assert(ipv6_bytes);
memset(dest, 0, sizeof(tor_addr_t));
dest->family = AF_INET6;
memcpy(dest->addr.in6_addr.s6_addr, ipv6_bytes, 16);
}
/** Set <b>dest</b> equal to the IPv6 address in the in6_addr <b>in6</b>. */
void
tor_addr_from_in6(tor_addr_t *dest, const struct in6_addr *in6)
{
tor_addr_from_ipv6_bytes(dest, (const char*)in6->s6_addr);
}
/** Copy a tor_addr_t from <b>src</b> to <b>dest</b>.
*/
void
tor_addr_copy(tor_addr_t *dest, const tor_addr_t *src)
{
if (src == dest)
return;
tor_assert(src);
tor_assert(dest);
memcpy(dest, src, sizeof(tor_addr_t));
}
/** Copy a tor_addr_t from <b>src</b> to <b>dest</b>, taking extra care to
* copy only the well-defined portions. Used for computing hashes of
* addresses.
*/
void
tor_addr_copy_tight(tor_addr_t *dest, const tor_addr_t *src)
{
tor_assert(src != dest);
tor_assert(src);
tor_assert(dest);
memset(dest, 0, sizeof(tor_addr_t));
dest->family = src->family;
switch (tor_addr_family(src))
{
case AF_INET:
dest->addr.in_addr.s_addr = src->addr.in_addr.s_addr;
break;
case AF_INET6:
memcpy(dest->addr.in6_addr.s6_addr, src->addr.in6_addr.s6_addr, 16);
case AF_UNSPEC:
break;
default:
tor_fragile_assert();
}
}
/** Given two addresses <b>addr1</b> and <b>addr2</b>, return 0 if the two
* addresses are equivalent under the mask mbits, less than 0 if addr1
* precedes addr2, and greater than 0 otherwise.
*
* Different address families (IPv4 vs IPv6) are always considered unequal if
* <b>how</b> is CMP_EXACT; otherwise, IPv6-mapped IPv4 addresses are
* considered equivalent to their IPv4 equivalents.
*/
int
tor_addr_compare(const tor_addr_t *addr1, const tor_addr_t *addr2,
tor_addr_comparison_t how)
{
return tor_addr_compare_masked(addr1, addr2, 128, how);
}
/** As tor_addr_compare(), but only looks at the first <b>mask</b> bits of
* the address.
*
* Reduce over-specific masks (>128 for ipv6, >32 for ipv4) to 128 or 32.
*
* The mask is interpreted relative to <b>addr1</b>, so that if a is
* \::ffff:1.2.3.4, and b is 3.4.5.6,
* tor_addr_compare_masked(a,b,100,CMP_SEMANTIC) is the same as
* -tor_addr_compare_masked(b,a,4,CMP_SEMANTIC).
*
* We guarantee that the ordering from tor_addr_compare_masked is a total
* order on addresses, but not that it is any particular order, or that it
* will be the same from one version to the next.
*/
int
tor_addr_compare_masked(const tor_addr_t *addr1, const tor_addr_t *addr2,
maskbits_t mbits, tor_addr_comparison_t how)
{
/** Helper: Evaluates to -1 if a is less than b, 0 if a equals b, or 1 if a
* is greater than b. May evaluate a and b more than once. */
#define TRISTATE(a,b) (((a)<(b))?-1: (((a)==(b))?0:1))
sa_family_t family1, family2, v_family1, v_family2;
tor_assert(addr1 && addr2);
v_family1 = family1 = tor_addr_family(addr1);
v_family2 = family2 = tor_addr_family(addr2);
if (family1==family2) {
/* When the families are the same, there's only one way to do the
* comparison: exactly. */
int r;
switch (family1) {
case AF_UNSPEC:
return 0; /* All unspecified addresses are equal */
case AF_INET: {
uint32_t a1 = tor_addr_to_ipv4h(addr1);
uint32_t a2 = tor_addr_to_ipv4h(addr2);
if (mbits <= 0)
return 0;
if (mbits > 32)
mbits = 32;
a1 >>= (32-mbits);
a2 >>= (32-mbits);
r = TRISTATE(a1, a2);
return r;
}
case AF_INET6: {
if (mbits > 128)
mbits = 128;
const uint8_t *a1 = tor_addr_to_in6_addr8(addr1);
const uint8_t *a2 = tor_addr_to_in6_addr8(addr2);
const int bytes = mbits >> 3;
const int leftover_bits = mbits & 7;
if (bytes && (r = tor_memcmp(a1, a2, bytes))) {
return r;
} else if (leftover_bits) {
uint8_t b1 = a1[bytes] >> (8-leftover_bits);
uint8_t b2 = a2[bytes] >> (8-leftover_bits);
return TRISTATE(b1, b2);
} else {
return 0;
}
}
default:
tor_fragile_assert();
return 0;
}
} else if (how == CMP_EXACT) {
/* Unequal families and an exact comparison? Stop now! */
return TRISTATE(family1, family2);
}
if (mbits == 0)
return 0;
if (family1 == AF_INET6 && tor_addr_is_v4(addr1))
v_family1 = AF_INET;
if (family2 == AF_INET6 && tor_addr_is_v4(addr2))
v_family2 = AF_INET;
if (v_family1 == v_family2) {
/* One or both addresses are a mapped ipv4 address. */
uint32_t a1, a2;
if (family1 == AF_INET6) {
a1 = tor_addr_to_mapped_ipv4h(addr1);
if (mbits <= 96)
return 0;
mbits -= 96; /* We just decided that the first 96 bits of a1 "match". */
} else {
a1 = tor_addr_to_ipv4h(addr1);
}
if (family2 == AF_INET6) {
a2 = tor_addr_to_mapped_ipv4h(addr2);
} else {
a2 = tor_addr_to_ipv4h(addr2);
}
if (mbits > 32) mbits = 32;
a1 >>= (32-mbits);
a2 >>= (32-mbits);
return TRISTATE(a1, a2);
} else {
/* Unequal families, and semantic comparison, and no semantic family
* matches. */
return TRISTATE(family1, family2);
}
}
/** Return a hash code based on the address addr. DOCDOC extra */
uint64_t
tor_addr_hash(const tor_addr_t *addr)
{
switch (tor_addr_family(addr)) {
case AF_INET:
return siphash24g(&addr->addr.in_addr.s_addr, 4);
case AF_UNSPEC:
return 0x4e4d5342;
case AF_INET6:
return siphash24g(&addr->addr.in6_addr.s6_addr, 16);
default:
tor_fragile_assert();
return 0;
}
}
/** Return a newly allocated string with a representation of <b>addr</b>. */
char *
tor_dup_addr(const tor_addr_t *addr)
{
char buf[TOR_ADDR_BUF_LEN];
if (tor_addr_to_str(buf, addr, sizeof(buf), 0)) {
return tor_strdup(buf);
} else {
return tor_strdup("<unknown address type>");
}
}
/** Return a string representing the address <b>addr</b>. This string
* is statically allocated, and must not be freed. Each call to
* <b>fmt_addr_impl</b> invalidates the last result of the function.
* This function is not thread-safe. If <b>decorate</b> is set, add
* brackets to IPv6 addresses.
*
* It's better to use the wrapper macros of this function:
* <b>fmt_addr()</b> and <b>fmt_and_decorate_addr()</b>.
*/
const char *
fmt_addr_impl(const tor_addr_t *addr, int decorate)
{
static char buf[TOR_ADDR_BUF_LEN];
if (!addr) return "<null>";
if (tor_addr_to_str(buf, addr, sizeof(buf), decorate))
return buf;
else
return "???";
}
/** Return a string representing the pair <b>addr</b> and <b>port</b>.
* This calls fmt_and_decorate_addr internally, so IPv6 addresses will
* have brackets, and the caveats of fmt_addr_impl apply.
*/
const char *
fmt_addrport(const tor_addr_t *addr, uint16_t port)
{
/* Add space for a colon and up to 5 digits. */
static char buf[TOR_ADDR_BUF_LEN + 6];
tor_snprintf(buf, sizeof(buf), "%s:%u", fmt_and_decorate_addr(addr), port);
return buf;
}
/** Like fmt_addr(), but takes <b>addr</b> as a host-order IPv4
* addresses. Also not thread-safe, also clobbers its return buffer on
* repeated calls. */
const char *
fmt_addr32(uint32_t addr)
{
static char buf[INET_NTOA_BUF_LEN];
struct in_addr in;
in.s_addr = htonl(addr);
tor_inet_ntoa(&in, buf, sizeof(buf));
return buf;
}
/** Convert the string in <b>src</b> to a tor_addr_t <b>addr</b>. The string
* may be an IPv4 address, an IPv6 address, or an IPv6 address surrounded by
* square brackets.
*
* Return an address family on success, or -1 if an invalid address string is
* provided. */
int
tor_addr_parse(tor_addr_t *addr, const char *src)
{
/* Holds substring of IPv6 address after removing square brackets */
char *tmp = NULL;
int result;
struct in_addr in_tmp;
struct in6_addr in6_tmp;
tor_assert(addr && src);
if (src[0] == '[' && src[1])
src = tmp = tor_strndup(src+1, strlen(src)-2);
if (tor_inet_pton(AF_INET6, src, &in6_tmp) > 0) {
result = AF_INET6;
tor_addr_from_in6(addr, &in6_tmp);
} else if (tor_inet_pton(AF_INET, src, &in_tmp) > 0) {
result = AF_INET;
tor_addr_from_in(addr, &in_tmp);
} else {
result = -1;
}
tor_free(tmp);
return result;
}
/** Parse an address or address-port combination from <b>s</b>, resolve the
* address as needed, and put the result in <b>addr_out</b> and (optionally)
* <b>port_out</b>. Return 0 on success, negative on failure. */
int
tor_addr_port_lookup(const char *s, tor_addr_t *addr_out, uint16_t *port_out)
{
const char *port;
tor_addr_t addr;
uint16_t portval;
char *tmp = NULL;
tor_assert(s);
tor_assert(addr_out);
s = eat_whitespace(s);
if (*s == '[') {
port = strstr(s, "]");
if (!port)
goto err;
tmp = tor_strndup(s+1, port-(s+1));
port = port+1;
if (*port == ':')
port++;
else
port = NULL;
} else {
port = strchr(s, ':');
if (port)
tmp = tor_strndup(s, port-s);
else
tmp = tor_strdup(s);
if (port)
++port;
}
if (tor_addr_lookup(tmp, AF_UNSPEC, &addr) != 0)
goto err;
tor_free(tmp);
if (port) {
portval = (int) tor_parse_long(port, 10, 1, 65535, NULL, NULL);
if (!portval)
goto err;
} else {
portval = 0;
}
if (port_out)
*port_out = portval;
tor_addr_copy(addr_out, &addr);
return 0;
err:
tor_free(tmp);
return -1;
}
#ifdef _WIN32
typedef ULONG (WINAPI *GetAdaptersAddresses_fn_t)(
ULONG, ULONG, PVOID, PIP_ADAPTER_ADDRESSES, PULONG);
#endif
#ifdef HAVE_IFADDRS_TO_SMARTLIST
/*
* Convert a linked list consisting of <b>ifaddrs</b> structures
* into smartlist of <b>tor_addr_t</b> structures.
*/
STATIC smartlist_t *
ifaddrs_to_smartlist(const struct ifaddrs *ifa, sa_family_t family)
{
smartlist_t *result = smartlist_new();
const struct ifaddrs *i;
for (i = ifa; i; i = i->ifa_next) {
tor_addr_t tmp;
if ((i->ifa_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
continue;
if (!i->ifa_addr)
continue;
if (i->ifa_addr->sa_family != AF_INET &&
i->ifa_addr->sa_family != AF_INET6)
continue;
if (family != AF_UNSPEC && i->ifa_addr->sa_family != family)
continue;
if (tor_addr_from_sockaddr(&tmp, i->ifa_addr, NULL) < 0)
continue;
smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
}
return result;
}
/** Use getiffaddrs() function to get list of current machine
* network interface addresses. Represent the result by smartlist of
* <b>tor_addr_t</b> structures.
*/
STATIC smartlist_t *
get_interface_addresses_ifaddrs(int severity, sa_family_t family)
{
/* Most free Unixy systems provide getifaddrs, which gives us a linked list
* of struct ifaddrs. */
struct ifaddrs *ifa = NULL;
smartlist_t *result;
if (getifaddrs(&ifa) < 0) {
log_fn(severity, LD_NET, "Unable to call getifaddrs(): %s",
strerror(errno));
return NULL;
}
result = ifaddrs_to_smartlist(ifa, family);
freeifaddrs(ifa);
return result;
}
#endif
#ifdef HAVE_IP_ADAPTER_TO_SMARTLIST
/** Convert a Windows-specific <b>addresses</b> linked list into smartlist
* of <b>tor_addr_t</b> structures.
*/
STATIC smartlist_t *
ip_adapter_addresses_to_smartlist(const IP_ADAPTER_ADDRESSES *addresses)
{
smartlist_t *result = smartlist_new();
const IP_ADAPTER_ADDRESSES *address;
for (address = addresses; address; address = address->Next) {
const IP_ADAPTER_UNICAST_ADDRESS *a;
for (a = address->FirstUnicastAddress; a; a = a->Next) {
/* Yes, it's a linked list inside a linked list */
const struct sockaddr *sa = a->Address.lpSockaddr;
tor_addr_t tmp;
if (sa->sa_family != AF_INET && sa->sa_family != AF_INET6)
continue;
if (tor_addr_from_sockaddr(&tmp, sa, NULL) < 0)
continue;
smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
}
}
return result;
}
/** Windows only: use GetAdaptersInfo() function to retrieve network interface
* addresses of current machine and return them to caller as smartlist of
* <b>tor_addr_t</b> structures.
*/
STATIC smartlist_t *
get_interface_addresses_win32(int severity, sa_family_t family)
{
/* Windows XP began to provide GetAdaptersAddresses. Windows 2000 had a
"GetAdaptersInfo", but that's deprecated; let's just try
GetAdaptersAddresses and fall back to connect+getsockname.
*/
HANDLE lib = load_windows_system_library(TEXT("iphlpapi.dll"));
smartlist_t *result = NULL;
GetAdaptersAddresses_fn_t fn;
ULONG size, res;
IP_ADAPTER_ADDRESSES *addresses = NULL;
(void) severity;
#define FLAGS (GAA_FLAG_SKIP_ANYCAST | \
GAA_FLAG_SKIP_MULTICAST | \
GAA_FLAG_SKIP_DNS_SERVER)
if (!lib) {
log_fn(severity, LD_NET, "Unable to load iphlpapi.dll");
goto done;
}
if (!(fn = (GetAdaptersAddresses_fn_t)
GetProcAddress(lib, "GetAdaptersAddresses"))) {
log_fn(severity, LD_NET, "Unable to obtain pointer to "
"GetAdaptersAddresses");
goto done;
}
/* Guess how much space we need. */
size = 15*1024;
addresses = tor_malloc(size);
res = fn(family, FLAGS, NULL, addresses, &size);
if (res == ERROR_BUFFER_OVERFLOW) {
/* we didn't guess that we needed enough space; try again */
tor_free(addresses);
addresses = tor_malloc(size);
res = fn(AF_UNSPEC, FLAGS, NULL, addresses, &size);
}
if (res != NO_ERROR) {
log_fn(severity, LD_NET, "GetAdaptersAddresses failed (result: %lu)", res);
goto done;
}
result = ip_adapter_addresses_to_smartlist(addresses);
done:
if (lib)
FreeLibrary(lib);
tor_free(addresses);
return result;
}
#endif
#ifdef HAVE_IFCONF_TO_SMARTLIST
/* Guess how much space we need. There shouldn't be any struct ifreqs
* larger than this, even on OS X where the struct's size is dynamic. */
#define IFREQ_SIZE 4096
/* This is defined on Mac OS X */
#ifndef _SIZEOF_ADDR_IFREQ
#define _SIZEOF_ADDR_IFREQ sizeof
#endif
/** Convert <b>*buf</b>, an ifreq structure array of size <b>buflen</b>,
* into smartlist of <b>tor_addr_t</b> structures.
*/
STATIC smartlist_t *
ifreq_to_smartlist(char *buf, size_t buflen)
{
smartlist_t *result = smartlist_new();
char *end = buf + buflen;
/* These acrobatics are due to alignment issues which trigger
* undefined behaviour traps on OSX. */
struct ifreq *r = tor_malloc(IFREQ_SIZE);
while (buf < end) {
/* Copy up to IFREQ_SIZE bytes into the struct ifreq, but don't overrun
* buf. */
memcpy(r, buf, end - buf < IFREQ_SIZE ? end - buf : IFREQ_SIZE);
const struct sockaddr *sa = &r->ifr_addr;
tor_addr_t tmp;
int valid_sa_family = (sa->sa_family == AF_INET ||
sa->sa_family == AF_INET6);
int conversion_success = (tor_addr_from_sockaddr(&tmp, sa, NULL) == 0);
if (valid_sa_family && conversion_success)
smartlist_add(result, tor_memdup(&tmp, sizeof(tmp)));
buf += _SIZEOF_ADDR_IFREQ(*r);
}
tor_free(r);
return result;
}
/** Use ioctl(.,SIOCGIFCONF,.) to get a list of current machine
* network interface addresses. Represent the result by smartlist of
* <b>tor_addr_t</b> structures.
*/
STATIC smartlist_t *
get_interface_addresses_ioctl(int severity, sa_family_t family)
{
/* Some older unixy systems make us use ioctl(SIOCGIFCONF) */
struct ifconf ifc;
ifc.ifc_buf = NULL;
int fd;
smartlist_t *result = NULL;
/* This interface, AFAICT, only supports AF_INET addresses,
* except on AIX. For Solaris, we could use SIOCGLIFCONF. */
/* Bail out if family is neither AF_INET nor AF_UNSPEC since
* ioctl() technique supports non-IPv4 interface addresses on
* a small number of niche systems only. If family is AF_UNSPEC,
* fall back to getting AF_INET addresses only. */
if (family == AF_UNSPEC)
family = AF_INET;
else if (family != AF_INET)
return NULL;
fd = socket(family, SOCK_DGRAM, 0);
if (fd < 0) {
tor_log(severity, LD_NET, "socket failed: %s", strerror(errno));
goto done;
}
int mult = 1;
do {
mult *= 2;
ifc.ifc_len = mult * IFREQ_SIZE;
ifc.ifc_buf = tor_realloc(ifc.ifc_buf, ifc.ifc_len);
tor_assert(ifc.ifc_buf);
if (ioctl(fd, SIOCGIFCONF, &ifc) < 0) {
tor_log(severity, LD_NET, "ioctl failed: %s", strerror(errno));
goto done;
}
/* Ensure we have least IFREQ_SIZE bytes unused at the end. Otherwise, we
* don't know if we got everything during ioctl. */
} while (mult * IFREQ_SIZE - ifc.ifc_len <= IFREQ_SIZE);
result = ifreq_to_smartlist(ifc.ifc_buf, ifc.ifc_len);
done:
if (fd >= 0)
close(fd);
tor_free(ifc.ifc_buf);
return result;
}
#endif
/** Try to ask our network interfaces what addresses they are bound to.
* Return a new smartlist of tor_addr_t on success, and NULL on failure.
* (An empty smartlist indicates that we successfully learned that we have no
* addresses.) Log failure messages at <b>severity</b>. Only return the
* interface addresses of requested <b>family</b> and ignore the addresses
* of other address families. */
MOCK_IMPL(smartlist_t *,
get_interface_addresses_raw,(int severity, sa_family_t family))
{
smartlist_t *result = NULL;
#if defined(HAVE_IFADDRS_TO_SMARTLIST)
if ((result = get_interface_addresses_ifaddrs(severity, family)))
return result;
#endif
#if defined(HAVE_IP_ADAPTER_TO_SMARTLIST)
if ((result = get_interface_addresses_win32(severity, family)))
return result;
#endif
#if defined(HAVE_IFCONF_TO_SMARTLIST)
if ((result = get_interface_addresses_ioctl(severity, family)))
return result;
#endif
(void) severity;
return NULL;
}
/** Return true iff <b>a</b> is a multicast address. */
int
tor_addr_is_multicast(const tor_addr_t *a)
{
sa_family_t family = tor_addr_family(a);
if (family == AF_INET) {
uint32_t ipv4h = tor_addr_to_ipv4h(a);
if ((ipv4h >> 24) == 0xe0)
return 1; /* Multicast */
} else if (family == AF_INET6) {
const uint8_t *a32 = tor_addr_to_in6_addr8(a);
if (a32[0] == 0xff)
return 1;
}
return 0;
}
/** Attempt to retrieve IP address of current host by utilizing some
* UDP socket trickery. Only look for address of given <b>family</b>
* (only AF_INET and AF_INET6 are supported). Set result to *<b>addr</b>.
* Return 0 on success, -1 on failure.
*/
MOCK_IMPL(int,
get_interface_address6_via_udp_socket_hack,(int severity,
sa_family_t family,
tor_addr_t *addr))
{
struct sockaddr_storage my_addr, target_addr;
int sock=-1, r=-1;
socklen_t addr_len;
memset(addr, 0, sizeof(tor_addr_t));
memset(&target_addr, 0, sizeof(target_addr));
/* Don't worry: no packets are sent. We just need to use a real address
* on the actual Internet. */
if (family == AF_INET6) {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&target_addr;
/* Use the "discard" service port */
sin6->sin6_port = htons(9);
sock = tor_open_socket(PF_INET6,SOCK_DGRAM,IPPROTO_UDP);
addr_len = (socklen_t)sizeof(struct sockaddr_in6);
sin6->sin6_family = AF_INET6;
S6_ADDR16(sin6->sin6_addr)[0] = htons(0x2002); /* 2002:: */
} else if (family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in*)&target_addr;
/* Use the "discard" service port */
sin->sin_port = htons(9);
sock = tor_open_socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP);
addr_len = (socklen_t)sizeof(struct sockaddr_in);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(0x12000001); /* 18.0.0.1 */
} else {
return -1;
}
if (sock < 0) {
int e = tor_socket_errno(-1);
log_fn(severity, LD_NET, "unable to create socket: %s",
tor_socket_strerror(e));
goto err;
}
if (tor_connect_socket(sock,(struct sockaddr *)&target_addr,
addr_len) < 0) {
int e = tor_socket_errno(sock);
log_fn(severity, LD_NET, "connect() failed: %s", tor_socket_strerror(e));
goto err;
}
if (tor_getsockname(sock,(struct sockaddr*)&my_addr, &addr_len)) {
int e = tor_socket_errno(sock);
log_fn(severity, LD_NET, "getsockname() to determine interface failed: %s",
tor_socket_strerror(e));
goto err;
}
if (tor_addr_from_sockaddr(addr, (struct sockaddr*)&my_addr, NULL) == 0) {
if (tor_addr_is_loopback(addr) || tor_addr_is_multicast(addr)) {
log_fn(severity, LD_NET, "Address that we determined via UDP socket"
" magic is unsuitable for public comms.");
} else {
r=0;
}
}
err:
if (sock >= 0)
tor_close_socket(sock);
if (r == -1)
memset(addr, 0, sizeof(tor_addr_t));
return r;
}
/** Set *<b>addr</b> to an arbitrary IP address (if any) of an interface that
* connects to the Internet. Prefer public IP addresses to internal IP
* addresses. This address should only be used in checking whether our
* address has changed, as it may be an internal IP address. Return 0 on
* success, -1 on failure.
* Prefer get_interface_address6_list for a list of all addresses on all
* interfaces which connect to the Internet.
*/
MOCK_IMPL(int,
get_interface_address6,(int severity, sa_family_t family, tor_addr_t *addr))
{
smartlist_t *addrs;
int rv = -1;
tor_assert(addr);
memset(addr, 0, sizeof(tor_addr_t));
/* Get a list of public or internal IPs in arbitrary order */
addrs = get_interface_address6_list(severity, family, 1);
/* Find the first non-internal address, or the last internal address
* Ideally, we want the default route, see #12377 for details */
SMARTLIST_FOREACH_BEGIN(addrs, tor_addr_t *, a) {
tor_addr_copy(addr, a);
rv = 0;
/* If we found a non-internal address, declare success. Otherwise,
* keep looking. */
if (!tor_addr_is_internal(a, 0))
break;
} SMARTLIST_FOREACH_END(a);
free_interface_address6_list(addrs);
return rv;
}
/** Free a smartlist of IP addresses returned by get_interface_address6_list.
*/
void
free_interface_address6_list(smartlist_t *addrs)
{
if (addrs != NULL) {
SMARTLIST_FOREACH(addrs, tor_addr_t *, a, tor_free(a));
smartlist_free(addrs);
}
}
/** Return a smartlist of the IP addresses of type family from all interfaces
* on the server. Excludes loopback and multicast addresses. Only includes
* internal addresses if include_internal is true. (Note that a relay behind
* NAT may use an internal address to connect to the Internet.)
* An empty smartlist means that there are no addresses of the selected type
* matching these criteria.
* Returns NULL on failure.
* Use free_interface_address6_list to free the returned list.
*/
MOCK_IMPL(smartlist_t *,get_interface_address6_list,(int severity,
sa_family_t family,
int include_internal))
{
smartlist_t *addrs;
tor_addr_t addr;
/* Try to do this the smart way if possible. */
if ((addrs = get_interface_addresses_raw(severity, family))) {
SMARTLIST_FOREACH_BEGIN(addrs, tor_addr_t *, a)
{
if (tor_addr_is_loopback(a) ||
tor_addr_is_multicast(a)) {
SMARTLIST_DEL_CURRENT(addrs, a);
tor_free(a);
continue;
}
if (!include_internal && tor_addr_is_internal(a, 0)) {
SMARTLIST_DEL_CURRENT(addrs, a);
tor_free(a);
continue;
}
} SMARTLIST_FOREACH_END(a);
}
if (addrs && smartlist_len(addrs) > 0) {
return addrs;
}
/* if we removed all entries as unsuitable */
if (addrs) {
smartlist_free(addrs);
}
/* Okay, the smart way is out. */
addrs = smartlist_new();
if (family == AF_INET || family == AF_UNSPEC) {
if (get_interface_address6_via_udp_socket_hack(severity,AF_INET,
&addr) == 0) {
if (include_internal || !tor_addr_is_internal(&addr, 0)) {
smartlist_add(addrs, tor_memdup(&addr, sizeof(addr)));
}
}
}
if (family == AF_INET6 || family == AF_UNSPEC) {
if (get_interface_address6_via_udp_socket_hack(severity,AF_INET6,
&addr) == 0) {
if (include_internal || !tor_addr_is_internal(&addr, 0)) {
smartlist_add(addrs, tor_memdup(&addr, sizeof(addr)));
}
}
}
return addrs;
}
/* ======
* IPv4 helpers
* XXXX024 IPv6 deprecate some of these.
*/
/** Given an address of the form "ip:port", try to divide it into its
* ip and port portions, setting *<b>address_out</b> to a newly
* allocated string holding the address portion and *<b>port_out</b>
* to the port.
*
* Don't do DNS lookups and don't allow domain names in the "ip" field.
*
* If <b>default_port</b> is less than 0, don't accept <b>addrport</b> of the
* form "ip" or "ip:0". Otherwise, accept those forms, and set
* *<b>port_out</b> to <b>default_port</b>.
*
* Return 0 on success, -1 on failure. */
int
tor_addr_port_parse(int severity, const char *addrport,
tor_addr_t *address_out, uint16_t *port_out,
int default_port)
{
int retval = -1;
int r;
char *addr_tmp = NULL;
tor_assert(addrport);
tor_assert(address_out);
tor_assert(port_out);
r = tor_addr_port_split(severity, addrport, &addr_tmp, port_out);
if (r < 0)
goto done;
if (!*port_out) {
if (default_port >= 0)
*port_out = default_port;
else
goto done;
}
/* make sure that address_out is an IP address */
if (tor_addr_parse(address_out, addr_tmp) < 0)
goto done;
retval = 0;
done:
tor_free(addr_tmp);
return retval;
}
/** Given an address of the form "host[:port]", try to divide it into its host
* and port portions, setting *<b>address_out</b> to a newly allocated string
* holding the address portion and *<b>port_out</b> to the port (or 0 if no
* port is given). Return 0 on success, -1 on failure. */
int
tor_addr_port_split(int severity, const char *addrport,
char **address_out, uint16_t *port_out)
{
tor_addr_t a_tmp;
tor_assert(addrport);
tor_assert(address_out);
tor_assert(port_out);
/* We need to check for IPv6 manually because addr_port_lookup() doesn't
* do a good job on IPv6 addresses that lack a port. */
if (tor_addr_parse(&a_tmp, addrport) == AF_INET6) {
*port_out = 0;
*address_out = tor_strdup(addrport);
return 0;
}
return addr_port_lookup(severity, addrport, address_out, NULL, port_out);
}
/** Parse a string of the form "host[:port]" from <b>addrport</b>. If
* <b>address</b> is provided, set *<b>address</b> to a copy of the
* host portion of the string. If <b>addr</b> is provided, try to
* resolve the host portion of the string and store it into
* *<b>addr</b> (in host byte order). If <b>port_out</b> is provided,
* store the port number into *<b>port_out</b>, or 0 if no port is given.
* If <b>port_out</b> is NULL, then there must be no port number in
* <b>addrport</b>.
* Return 0 on success, -1 on failure.
*/
int
addr_port_lookup(int severity, const char *addrport, char **address,
uint32_t *addr, uint16_t *port_out)
{
const char *colon;
char *address_ = NULL;
int port_;
int ok = 1;
tor_assert(addrport);
colon = strrchr(addrport, ':');
if (colon) {
address_ = tor_strndup(addrport, colon-addrport);
port_ = (int) tor_parse_long(colon+1,10,1,65535,NULL,NULL);
if (!port_) {
log_fn(severity, LD_GENERAL, "Port %s out of range", escaped(colon+1));
ok = 0;
}
if (!port_out) {
char *esc_addrport = esc_for_log(addrport);
log_fn(severity, LD_GENERAL,
"Port %s given on %s when not required",
escaped(colon+1), esc_addrport);
tor_free(esc_addrport);
ok = 0;
}
} else {
address_ = tor_strdup(addrport);
port_ = 0;
}
if (addr) {
/* There's an addr pointer, so we need to resolve the hostname. */
if (tor_lookup_hostname(address_,addr)) {
log_fn(severity, LD_NET, "Couldn't look up %s", escaped(address_));
ok = 0;
*addr = 0;
}
}
if (address && ok) {
*address = address_;
} else {
if (address)
*address = NULL;
tor_free(address_);
}
if (port_out)
*port_out = ok ? ((uint16_t) port_) : 0;
return ok ? 0 : -1;
}
/** If <b>mask</b> is an address mask for a bit-prefix, return the number of
* bits. Otherwise, return -1. */
int
addr_mask_get_bits(uint32_t mask)
{
int i;
if (mask == 0)
return 0;
if (mask == 0xFFFFFFFFu)
return 32;
for (i=1; i<=32; ++i) {
if (mask == (uint32_t) ~((1u<<(32-i))-1)) {
return i;
}
}
return -1;
}
/** Parse a string <b>s</b> in the format of (*|port(-maxport)?)?, setting the
* various *out pointers as appropriate. Return 0 on success, -1 on failure.
*/
int
parse_port_range(const char *port, uint16_t *port_min_out,
uint16_t *port_max_out)
{
int port_min, port_max, ok;
tor_assert(port_min_out);
tor_assert(port_max_out);
if (!port || *port == '\0' || strcmp(port, "*") == 0) {
port_min = 1;
port_max = 65535;
} else {
char *endptr = NULL;
port_min = (int)tor_parse_long(port, 10, 0, 65535, &ok, &endptr);
if (!ok) {
log_warn(LD_GENERAL,
"Malformed port %s on address range; rejecting.",
escaped(port));
return -1;
} else if (endptr && *endptr == '-') {
port = endptr+1;
endptr = NULL;
port_max = (int)tor_parse_long(port, 10, 1, 65535, &ok, &endptr);
if (!ok) {
log_warn(LD_GENERAL,
"Malformed port %s on address range; rejecting.",
escaped(port));
return -1;
}
} else {
port_max = port_min;
}
if (port_min > port_max) {
log_warn(LD_GENERAL, "Insane port range on address policy; rejecting.");
return -1;
}
}
if (port_min < 1)
port_min = 1;
if (port_max > 65535)
port_max = 65535;
*port_min_out = (uint16_t) port_min;
*port_max_out = (uint16_t) port_max;
return 0;
}
/** Given an IPv4 in_addr struct *<b>in</b> (in network order, as usual),
* write it as a string into the <b>buf_len</b>-byte buffer in
* <b>buf</b>.
*/
int
tor_inet_ntoa(const struct in_addr *in, char *buf, size_t buf_len)
{
uint32_t a = ntohl(in->s_addr);
return tor_snprintf(buf, buf_len, "%d.%d.%d.%d",
(int)(uint8_t)((a>>24)&0xff),
(int)(uint8_t)((a>>16)&0xff),
(int)(uint8_t)((a>>8 )&0xff),
(int)(uint8_t)((a )&0xff));
}
/** Given a host-order <b>addr</b>, call tor_inet_ntop() on it
* and return a strdup of the resulting address.
*/
char *
tor_dup_ip(uint32_t addr)
{
char buf[TOR_ADDR_BUF_LEN];
struct in_addr in;
in.s_addr = htonl(addr);
tor_inet_ntop(AF_INET, &in, buf, sizeof(buf));
return tor_strdup(buf);
}
/**
* Set *<b>addr</b> to a host-order IPv4 address (if any) of an
* interface that connects to the Internet. Prefer public IP addresses to
* internal IP addresses. This address should only be used in checking
* whether our address has changed, as it may be an internal IPv4 address.
* Return 0 on success, -1 on failure.
* Prefer get_interface_address_list6 for a list of all IPv4 and IPv6
* addresses on all interfaces which connect to the Internet.
*/
MOCK_IMPL(int,
get_interface_address,(int severity, uint32_t *addr))
{
tor_addr_t local_addr;
int r;
memset(addr, 0, sizeof(uint32_t));
r = get_interface_address6(severity, AF_INET, &local_addr);
if (r>=0)
*addr = tor_addr_to_ipv4h(&local_addr);
return r;
}
/** Return true if we can tell that <b>name</b> is a canonical name for the
* loopback address. */
int
tor_addr_hostname_is_local(const char *name)
{
return !strcasecmp(name, "localhost") ||
!strcasecmp(name, "local") ||
!strcasecmpend(name, ".local");
}
/** Return a newly allocated tor_addr_port_t with <b>addr</b> and
<b>port</b> filled in. */
tor_addr_port_t *
tor_addr_port_new(const tor_addr_t *addr, uint16_t port)
{
tor_addr_port_t *ap = tor_malloc_zero(sizeof(tor_addr_port_t));
if (addr)
tor_addr_copy(&ap->addr, addr);
ap->port = port;
return ap;
}