tor/src/common/util.c

5775 lines
162 KiB
C

/* Copyright (c) 2003, Roger Dingledine
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2016, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file util.c
* \brief Common functions for strings, IO, network, data structures,
* process control.
**/
#include "orconfig.h"
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#define UTIL_PRIVATE
#include "util.h"
#include "torlog.h"
#include "crypto.h"
#include "torint.h"
#include "container.h"
#include "address.h"
#include "sandbox.h"
#include "backtrace.h"
#include "util_process.h"
#include "util_format.h"
#ifdef _WIN32
#include <io.h>
#include <direct.h>
#include <process.h>
#include <tchar.h>
#include <winbase.h>
#else
#include <dirent.h>
#include <pwd.h>
#include <grp.h>
#endif
/* math.h needs this on Linux */
#ifndef _USE_ISOC99_
#define _USE_ISOC99_ 1
#endif
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <signal.h>
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#ifdef HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_MALLOC_MALLOC_H
#include <malloc/malloc.h>
#endif
#ifdef HAVE_MALLOC_H
#if !defined(OPENBSD) && !defined(__FreeBSD__)
/* OpenBSD has a malloc.h, but for our purposes, it only exists in order to
* scold us for being so stupid as to autodetect its presence. To be fair,
* they've done this since 1996, when autoconf was only 5 years old. */
#include <malloc.h>
#endif
#endif
#ifdef HAVE_MALLOC_NP_H
#include <malloc_np.h>
#endif
#ifdef HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif
#if defined(HAVE_SYS_PRCTL_H) && defined(__linux__)
#include <sys/prctl.h>
#endif
#ifdef __clang_analyzer__
#undef MALLOC_ZERO_WORKS
#endif
/* =====
* Memory management
* ===== */
#ifdef USE_DMALLOC
#undef strndup
#include <dmalloc.h>
/* Macro to pass the extra dmalloc args to another function. */
#define DMALLOC_FN_ARGS , file, line
#if defined(HAVE_DMALLOC_STRDUP)
/* the dmalloc_strdup should be fine as defined */
#elif defined(HAVE_DMALLOC_STRNDUP)
#define dmalloc_strdup(file, line, string, xalloc_b) \
dmalloc_strndup(file, line, (string), -1, xalloc_b)
#else
#error "No dmalloc_strdup or equivalent"
#endif
#else /* not using dmalloc */
#define DMALLOC_FN_ARGS
#endif
/** Allocate a chunk of <b>size</b> bytes of memory, and return a pointer to
* result. On error, log and terminate the process. (Same as malloc(size),
* but never returns NULL.)
*
* <b>file</b> and <b>line</b> are used if dmalloc is enabled, and
* ignored otherwise.
*/
void *
tor_malloc_(size_t size DMALLOC_PARAMS)
{
void *result;
tor_assert(size < SIZE_T_CEILING);
#ifndef MALLOC_ZERO_WORKS
/* Some libc mallocs don't work when size==0. Override them. */
if (size==0) {
size=1;
}
#endif
#ifdef USE_DMALLOC
result = dmalloc_malloc(file, line, size, DMALLOC_FUNC_MALLOC, 0, 0);
#else
result = raw_malloc(size);
#endif
if (PREDICT_UNLIKELY(result == NULL)) {
/* LCOV_EXCL_START */
log_err(LD_MM,"Out of memory on malloc(). Dying.");
/* If these functions die within a worker process, they won't call
* spawn_exit, but that's ok, since the parent will run out of memory soon
* anyway. */
exit(1);
/* LCOV_EXCL_STOP */
}
return result;
}
/** Allocate a chunk of <b>size</b> bytes of memory, fill the memory with
* zero bytes, and return a pointer to the result. Log and terminate
* the process on error. (Same as calloc(size,1), but never returns NULL.)
*/
void *
tor_malloc_zero_(size_t size DMALLOC_PARAMS)
{
/* You may ask yourself, "wouldn't it be smart to use calloc instead of
* malloc+memset? Perhaps libc's calloc knows some nifty optimization trick
* we don't!" Indeed it does, but its optimizations are only a big win when
* we're allocating something very big (it knows if it just got the memory
* from the OS in a pre-zeroed state). We don't want to use tor_malloc_zero
* for big stuff, so we don't bother with calloc. */
void *result = tor_malloc_(size DMALLOC_FN_ARGS);
memset(result, 0, size);
return result;
}
/* The square root of SIZE_MAX + 1. If a is less than this, and b is less
* than this, then a*b is less than SIZE_MAX. (For example, if size_t is
* 32 bits, then SIZE_MAX is 0xffffffff and this value is 0x10000. If a and
* b are less than this, then their product is at most (65535*65535) ==
* 0xfffe0001. */
#define SQRT_SIZE_MAX_P1 (((size_t)1) << (sizeof(size_t)*4))
/** Return non-zero if and only if the product of the arguments is exact. */
static inline int
size_mul_check(const size_t x, const size_t y)
{
/* This first check is equivalent to
(x < SQRT_SIZE_MAX_P1 && y < SQRT_SIZE_MAX_P1)
Rationale: if either one of x or y is >= SQRT_SIZE_MAX_P1, then it
will have some bit set in its most significant half.
*/
return ((x|y) < SQRT_SIZE_MAX_P1 ||
y == 0 ||
x <= SIZE_MAX / y);
}
#ifdef TOR_UNIT_TESTS
/** Exposed for unit tests only */
int
size_mul_check__(const size_t x, const size_t y)
{
return size_mul_check(x,y);
}
#endif
/** Allocate a chunk of <b>nmemb</b>*<b>size</b> bytes of memory, fill
* the memory with zero bytes, and return a pointer to the result.
* Log and terminate the process on error. (Same as
* calloc(<b>nmemb</b>,<b>size</b>), but never returns NULL.)
* The second argument (<b>size</b>) should preferably be non-zero
* and a compile-time constant.
*/
void *
tor_calloc_(size_t nmemb, size_t size DMALLOC_PARAMS)
{
tor_assert(size_mul_check(nmemb, size));
return tor_malloc_zero_((nmemb * size) DMALLOC_FN_ARGS);
}
/** Change the size of the memory block pointed to by <b>ptr</b> to <b>size</b>
* bytes long; return the new memory block. On error, log and
* terminate. (Like realloc(ptr,size), but never returns NULL.)
*/
void *
tor_realloc_(void *ptr, size_t size DMALLOC_PARAMS)
{
void *result;
tor_assert(size < SIZE_T_CEILING);
#ifndef MALLOC_ZERO_WORKS
/* Some libc mallocs don't work when size==0. Override them. */
if (size==0) {
size=1;
}
#endif
#ifdef USE_DMALLOC
result = dmalloc_realloc(file, line, ptr, size, DMALLOC_FUNC_REALLOC, 0);
#else
result = raw_realloc(ptr, size);
#endif
if (PREDICT_UNLIKELY(result == NULL)) {
/* LCOV_EXCL_START */
log_err(LD_MM,"Out of memory on realloc(). Dying.");
exit(1);
/* LCOV_EXCL_STOP */
}
return result;
}
/**
* Try to realloc <b>ptr</b> so that it takes up sz1 * sz2 bytes. Check for
* overflow. Unlike other allocation functions, return NULL on overflow.
*/
void *
tor_reallocarray_(void *ptr, size_t sz1, size_t sz2 DMALLOC_PARAMS)
{
/* XXXX we can make this return 0, but we would need to check all the
* reallocarray users. */
tor_assert(size_mul_check(sz1, sz2));
return tor_realloc(ptr, (sz1 * sz2) DMALLOC_FN_ARGS);
}
/** Return a newly allocated copy of the NUL-terminated string s. On
* error, log and terminate. (Like strdup(s), but never returns
* NULL.)
*/
char *
tor_strdup_(const char *s DMALLOC_PARAMS)
{
char *duplicate;
tor_assert(s);
#ifdef USE_DMALLOC
duplicate = dmalloc_strdup(file, line, s, 0);
#else
duplicate = raw_strdup(s);
#endif
if (PREDICT_UNLIKELY(duplicate == NULL)) {
/* LCOV_EXCL_START */
log_err(LD_MM,"Out of memory on strdup(). Dying.");
exit(1);
/* LCOV_EXCL_STOP */
}
return duplicate;
}
/** Allocate and return a new string containing the first <b>n</b>
* characters of <b>s</b>. If <b>s</b> is longer than <b>n</b>
* characters, only the first <b>n</b> are copied. The result is
* always NUL-terminated. (Like strndup(s,n), but never returns
* NULL.)
*/
char *
tor_strndup_(const char *s, size_t n DMALLOC_PARAMS)
{
char *duplicate;
tor_assert(s);
tor_assert(n < SIZE_T_CEILING);
duplicate = tor_malloc_((n+1) DMALLOC_FN_ARGS);
/* Performance note: Ordinarily we prefer strlcpy to strncpy. But
* this function gets called a whole lot, and platform strncpy is
* much faster than strlcpy when strlen(s) is much longer than n.
*/
strncpy(duplicate, s, n);
duplicate[n]='\0';
return duplicate;
}
/** Allocate a chunk of <b>len</b> bytes, with the same contents as the
* <b>len</b> bytes starting at <b>mem</b>. */
void *
tor_memdup_(const void *mem, size_t len DMALLOC_PARAMS)
{
char *duplicate;
tor_assert(len < SIZE_T_CEILING);
tor_assert(mem);
duplicate = tor_malloc_(len DMALLOC_FN_ARGS);
memcpy(duplicate, mem, len);
return duplicate;
}
/** As tor_memdup(), but add an extra 0 byte at the end of the resulting
* memory. */
void *
tor_memdup_nulterm_(const void *mem, size_t len DMALLOC_PARAMS)
{
char *duplicate;
tor_assert(len < SIZE_T_CEILING+1);
tor_assert(mem);
duplicate = tor_malloc_(len+1 DMALLOC_FN_ARGS);
memcpy(duplicate, mem, len);
duplicate[len] = '\0';
return duplicate;
}
/** Helper for places that need to take a function pointer to the right
* spelling of "free()". */
void
tor_free_(void *mem)
{
tor_free(mem);
}
DISABLE_GCC_WARNING(aggregate-return)
/** Call the platform malloc info function, and dump the results to the log at
* level <b>severity</b>. If no such function exists, do nothing. */
void
tor_log_mallinfo(int severity)
{
#ifdef HAVE_MALLINFO
struct mallinfo mi;
memset(&mi, 0, sizeof(mi));
mi = mallinfo();
tor_log(severity, LD_MM,
"mallinfo() said: arena=%d, ordblks=%d, smblks=%d, hblks=%d, "
"hblkhd=%d, usmblks=%d, fsmblks=%d, uordblks=%d, fordblks=%d, "
"keepcost=%d",
mi.arena, mi.ordblks, mi.smblks, mi.hblks,
mi.hblkhd, mi.usmblks, mi.fsmblks, mi.uordblks, mi.fordblks,
mi.keepcost);
#else
(void)severity;
#endif
#ifdef USE_DMALLOC
dmalloc_log_changed(0, /* Since the program started. */
1, /* Log info about non-freed pointers. */
0, /* Do not log info about freed pointers. */
0 /* Do not log individual pointers. */
);
#endif
}
ENABLE_GCC_WARNING(aggregate-return)
/* =====
* Math
* ===== */
/**
* Returns the natural logarithm of d base e. We defined this wrapper here so
* to avoid conflicts with old versions of tor_log(), which were named log().
*/
double
tor_mathlog(double d)
{
return log(d);
}
/** Return the long integer closest to <b>d</b>. We define this wrapper
* here so that not all users of math.h need to use the right incantations
* to get the c99 functions. */
long
tor_lround(double d)
{
#if defined(HAVE_LROUND)
return lround(d);
#elif defined(HAVE_RINT)
return (long)rint(d);
#else
return (long)(d > 0 ? d + 0.5 : ceil(d - 0.5));
#endif
}
/** Return the 64-bit integer closest to d. We define this wrapper here so
* that not all users of math.h need to use the right incantations to get the
* c99 functions. */
int64_t
tor_llround(double d)
{
#if defined(HAVE_LLROUND)
return (int64_t)llround(d);
#elif defined(HAVE_RINT)
return (int64_t)rint(d);
#else
return (int64_t)(d > 0 ? d + 0.5 : ceil(d - 0.5));
#endif
}
/** Returns floor(log2(u64)). If u64 is 0, (incorrectly) returns 0. */
int
tor_log2(uint64_t u64)
{
int r = 0;
if (u64 >= (U64_LITERAL(1)<<32)) {
u64 >>= 32;
r = 32;
}
if (u64 >= (U64_LITERAL(1)<<16)) {
u64 >>= 16;
r += 16;
}
if (u64 >= (U64_LITERAL(1)<<8)) {
u64 >>= 8;
r += 8;
}
if (u64 >= (U64_LITERAL(1)<<4)) {
u64 >>= 4;
r += 4;
}
if (u64 >= (U64_LITERAL(1)<<2)) {
u64 >>= 2;
r += 2;
}
if (u64 >= (U64_LITERAL(1)<<1)) {
u64 >>= 1;
r += 1;
}
return r;
}
/** Return the power of 2 in range [1,UINT64_MAX] closest to <b>u64</b>. If
* there are two powers of 2 equally close, round down. */
uint64_t
round_to_power_of_2(uint64_t u64)
{
int lg2;
uint64_t low;
uint64_t high;
if (u64 == 0)
return 1;
lg2 = tor_log2(u64);
low = U64_LITERAL(1) << lg2;
if (lg2 == 63)
return low;
high = U64_LITERAL(1) << (lg2+1);
if (high - u64 < u64 - low)
return high;
else
return low;
}
/** Return the lowest x such that x is at least <b>number</b>, and x modulo
* <b>divisor</b> == 0. If no such x can be expressed as an unsigned, return
* UINT_MAX */
unsigned
round_to_next_multiple_of(unsigned number, unsigned divisor)
{
tor_assert(divisor > 0);
if (UINT_MAX - divisor + 1 < number)
return UINT_MAX;
number += divisor - 1;
number -= number % divisor;
return number;
}
/** Return the lowest x such that x is at least <b>number</b>, and x modulo
* <b>divisor</b> == 0. If no such x can be expressed as a uint32_t, return
* UINT32_MAX */
uint32_t
round_uint32_to_next_multiple_of(uint32_t number, uint32_t divisor)
{
tor_assert(divisor > 0);
if (UINT32_MAX - divisor + 1 < number)
return UINT32_MAX;
number += divisor - 1;
number -= number % divisor;
return number;
}
/** Return the lowest x such that x is at least <b>number</b>, and x modulo
* <b>divisor</b> == 0. If no such x can be expressed as a uint64_t, return
* UINT64_MAX */
uint64_t
round_uint64_to_next_multiple_of(uint64_t number, uint64_t divisor)
{
tor_assert(divisor > 0);
if (UINT64_MAX - divisor + 1 < number)
return UINT64_MAX;
number += divisor - 1;
number -= number % divisor;
return number;
}
/** Transform a random value <b>p</b> from the uniform distribution in
* [0.0, 1.0[ into a Laplace distributed value with location parameter
* <b>mu</b> and scale parameter <b>b</b>. Truncate the final result
* to be an integer in [INT64_MIN, INT64_MAX]. */
int64_t
sample_laplace_distribution(double mu, double b, double p)
{
double result;
tor_assert(p >= 0.0 && p < 1.0);
/* This is the "inverse cumulative distribution function" from:
* http://en.wikipedia.org/wiki/Laplace_distribution */
if (p <= 0.0) {
/* Avoid taking log(0.0) == -INFINITY, as some processors or compiler
* options can cause the program to trap. */
return INT64_MIN;
}
result = mu - b * (p > 0.5 ? 1.0 : -1.0)
* tor_mathlog(1.0 - 2.0 * fabs(p - 0.5));
return clamp_double_to_int64(result);
}
/** Add random noise between INT64_MIN and INT64_MAX coming from a Laplace
* distribution with mu = 0 and b = <b>delta_f</b>/<b>epsilon</b> to
* <b>signal</b> based on the provided <b>random</b> value in [0.0, 1.0[.
* The epsilon value must be between ]0.0, 1.0]. delta_f must be greater
* than 0. */
int64_t
add_laplace_noise(int64_t signal_, double random_, double delta_f,
double epsilon)
{
int64_t noise;
/* epsilon MUST be between ]0.0, 1.0] */
tor_assert(epsilon > 0.0 && epsilon <= 1.0);
/* delta_f MUST be greater than 0. */
tor_assert(delta_f > 0.0);
/* Just add noise, no further signal */
noise = sample_laplace_distribution(0.0,
delta_f / epsilon,
random_);
/* Clip (signal + noise) to [INT64_MIN, INT64_MAX] */
if (noise > 0 && INT64_MAX - noise < signal_)
return INT64_MAX;
else if (noise < 0 && INT64_MIN - noise > signal_)
return INT64_MIN;
else
return signal_ + noise;
}
/* Helper: return greatest common divisor of a,b */
static uint64_t
gcd64(uint64_t a, uint64_t b)
{
while (b) {
uint64_t t = b;
b = a % b;
a = t;
}
return a;
}
/* Given a fraction *<b>numer</b> / *<b>denom</b>, simplify it.
* Requires that the denominator is greater than 0. */
void
simplify_fraction64(uint64_t *numer, uint64_t *denom)
{
tor_assert(denom);
uint64_t gcd = gcd64(*numer, *denom);
*numer /= gcd;
*denom /= gcd;
}
/** Return the number of bits set in <b>v</b>. */
int
n_bits_set_u8(uint8_t v)
{
static const int nybble_table[] = {
0, /* 0000 */
1, /* 0001 */
1, /* 0010 */
2, /* 0011 */
1, /* 0100 */
2, /* 0101 */
2, /* 0110 */
3, /* 0111 */
1, /* 1000 */
2, /* 1001 */
2, /* 1010 */
3, /* 1011 */
2, /* 1100 */
3, /* 1101 */
3, /* 1110 */
4, /* 1111 */
};
return nybble_table[v & 15] + nybble_table[v>>4];
}
/* =====
* String manipulation
* ===== */
/** Remove from the string <b>s</b> every character which appears in
* <b>strip</b>. */
void
tor_strstrip(char *s, const char *strip)
{
char *readp = s;
while (*readp) {
if (strchr(strip, *readp)) {
++readp;
} else {
*s++ = *readp++;
}
}
*s = '\0';
}
/** Return a pointer to a NUL-terminated hexadecimal string encoding
* the first <b>fromlen</b> bytes of <b>from</b>. (fromlen must be \<= 32.) The
* result does not need to be deallocated, but repeated calls to
* hex_str will trash old results.
*/
const char *
hex_str(const char *from, size_t fromlen)
{
static char buf[65];
if (fromlen>(sizeof(buf)-1)/2)
fromlen = (sizeof(buf)-1)/2;
base16_encode(buf,sizeof(buf),from,fromlen);
return buf;
}
/** Convert all alphabetic characters in the nul-terminated string <b>s</b> to
* lowercase. */
void
tor_strlower(char *s)
{
while (*s) {
*s = TOR_TOLOWER(*s);
++s;
}
}
/** Convert all alphabetic characters in the nul-terminated string <b>s</b> to
* lowercase. */
void
tor_strupper(char *s)
{
while (*s) {
*s = TOR_TOUPPER(*s);
++s;
}
}
/** Return 1 if every character in <b>s</b> is printable, else return 0.
*/
int
tor_strisprint(const char *s)
{
while (*s) {
if (!TOR_ISPRINT(*s))
return 0;
s++;
}
return 1;
}
/** Return 1 if no character in <b>s</b> is uppercase, else return 0.
*/
int
tor_strisnonupper(const char *s)
{
while (*s) {
if (TOR_ISUPPER(*s))
return 0;
s++;
}
return 1;
}
/** As strcmp, except that either string may be NULL. The NULL string is
* considered to be before any non-NULL string. */
int
strcmp_opt(const char *s1, const char *s2)
{
if (!s1) {
if (!s2)
return 0;
else
return -1;
} else if (!s2) {
return 1;
} else {
return strcmp(s1, s2);
}
}
/** Compares the first strlen(s2) characters of s1 with s2. Returns as for
* strcmp.
*/
int
strcmpstart(const char *s1, const char *s2)
{
size_t n = strlen(s2);
return strncmp(s1, s2, n);
}
/** Compare the s1_len-byte string <b>s1</b> with <b>s2</b>,
* without depending on a terminating nul in s1. Sorting order is first by
* length, then lexically; return values are as for strcmp.
*/
int
strcmp_len(const char *s1, const char *s2, size_t s1_len)
{
size_t s2_len = strlen(s2);
if (s1_len < s2_len)
return -1;
if (s1_len > s2_len)
return 1;
return fast_memcmp(s1, s2, s2_len);
}
/** Compares the first strlen(s2) characters of s1 with s2. Returns as for
* strcasecmp.
*/
int
strcasecmpstart(const char *s1, const char *s2)
{
size_t n = strlen(s2);
return strncasecmp(s1, s2, n);
}
/** Compares the last strlen(s2) characters of s1 with s2. Returns as for
* strcmp.
*/
int
strcmpend(const char *s1, const char *s2)
{
size_t n1 = strlen(s1), n2 = strlen(s2);
if (n2>n1)
return strcmp(s1,s2);
else
return strncmp(s1+(n1-n2), s2, n2);
}
/** Compares the last strlen(s2) characters of s1 with s2. Returns as for
* strcasecmp.
*/
int
strcasecmpend(const char *s1, const char *s2)
{
size_t n1 = strlen(s1), n2 = strlen(s2);
if (n2>n1) /* then they can't be the same; figure out which is bigger */
return strcasecmp(s1,s2);
else
return strncasecmp(s1+(n1-n2), s2, n2);
}
/** Compare the value of the string <b>prefix</b> with the start of the
* <b>memlen</b>-byte memory chunk at <b>mem</b>. Return as for strcmp.
*
* [As fast_memcmp(mem, prefix, strlen(prefix)) but returns -1 if memlen is
* less than strlen(prefix).]
*/
int
fast_memcmpstart(const void *mem, size_t memlen,
const char *prefix)
{
size_t plen = strlen(prefix);
if (memlen < plen)
return -1;
return fast_memcmp(mem, prefix, plen);
}
/** Return a pointer to the first char of s that is not whitespace and
* not a comment, or to the terminating NUL if no such character exists.
*/
const char *
eat_whitespace(const char *s)
{
tor_assert(s);
while (1) {
switch (*s) {
case '\0':
default:
return s;
case ' ':
case '\t':
case '\n':
case '\r':
++s;
break;
case '#':
++s;
while (*s && *s != '\n')
++s;
}
}
}
/** Return a pointer to the first char of s that is not whitespace and
* not a comment, or to the terminating NUL if no such character exists.
*/
const char *
eat_whitespace_eos(const char *s, const char *eos)
{
tor_assert(s);
tor_assert(eos && s <= eos);
while (s < eos) {
switch (*s) {
case '\0':
default:
return s;
case ' ':
case '\t':
case '\n':
case '\r':
++s;
break;
case '#':
++s;
while (s < eos && *s && *s != '\n')
++s;
}
}
return s;
}
/** Return a pointer to the first char of s that is not a space or a tab
* or a \\r, or to the terminating NUL if no such character exists. */
const char *
eat_whitespace_no_nl(const char *s)
{
while (*s == ' ' || *s == '\t' || *s == '\r')
++s;
return s;
}
/** As eat_whitespace_no_nl, but stop at <b>eos</b> whether we have
* found a non-whitespace character or not. */
const char *
eat_whitespace_eos_no_nl(const char *s, const char *eos)
{
while (s < eos && (*s == ' ' || *s == '\t' || *s == '\r'))
++s;
return s;
}
/** Return a pointer to the first char of s that is whitespace or <b>#</b>,
* or to the terminating NUL if no such character exists.
*/
const char *
find_whitespace(const char *s)
{
/* tor_assert(s); */
while (1) {
switch (*s)
{
case '\0':
case '#':
case ' ':
case '\r':
case '\n':
case '\t':
return s;
default:
++s;
}
}
}
/** As find_whitespace, but stop at <b>eos</b> whether we have found a
* whitespace or not. */
const char *
find_whitespace_eos(const char *s, const char *eos)
{
/* tor_assert(s); */
while (s < eos) {
switch (*s)
{
case '\0':
case '#':
case ' ':
case '\r':
case '\n':
case '\t':
return s;
default:
++s;
}
}
return s;
}
/** Return the first occurrence of <b>needle</b> in <b>haystack</b> that
* occurs at the start of a line (that is, at the beginning of <b>haystack</b>
* or immediately after a newline). Return NULL if no such string is found.
*/
const char *
find_str_at_start_of_line(const char *haystack, const char *needle)
{
size_t needle_len = strlen(needle);
do {
if (!strncmp(haystack, needle, needle_len))
return haystack;
haystack = strchr(haystack, '\n');
if (!haystack)
return NULL;
else
++haystack;
} while (*haystack);
return NULL;
}
/** Returns true if <b>string</b> could be a C identifier.
A C identifier must begin with a letter or an underscore and the
rest of its characters can be letters, numbers or underscores. No
length limit is imposed. */
int
string_is_C_identifier(const char *string)
{
size_t iter;
size_t length = strlen(string);
if (!length)
return 0;
for (iter = 0; iter < length ; iter++) {
if (iter == 0) {
if (!(TOR_ISALPHA(string[iter]) ||
string[iter] == '_'))
return 0;
} else {
if (!(TOR_ISALPHA(string[iter]) ||
TOR_ISDIGIT(string[iter]) ||
string[iter] == '_'))
return 0;
}
}
return 1;
}
/** Return true iff the 'len' bytes at 'mem' are all zero. */
int
tor_mem_is_zero(const char *mem, size_t len)
{
static const char ZERO[] = {
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
};
while (len >= sizeof(ZERO)) {
/* It's safe to use fast_memcmp here, since the very worst thing an
* attacker could learn is how many initial bytes of a secret were zero */
if (fast_memcmp(mem, ZERO, sizeof(ZERO)))
return 0;
len -= sizeof(ZERO);
mem += sizeof(ZERO);
}
/* Deal with leftover bytes. */
if (len)
return fast_memeq(mem, ZERO, len);
return 1;
}
/** Return true iff the DIGEST_LEN bytes in digest are all zero. */
int
tor_digest_is_zero(const char *digest)
{
static const uint8_t ZERO_DIGEST[] = {
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0
};
return tor_memeq(digest, ZERO_DIGEST, DIGEST_LEN);
}
/** Return true if <b>string</b> is a valid 'key=[value]' string.
* "value" is optional, to indicate the empty string. Log at logging
* <b>severity</b> if something ugly happens. */
int
string_is_key_value(int severity, const char *string)
{
/* position of equal sign in string */
const char *equal_sign_pos = NULL;
tor_assert(string);
if (strlen(string) < 2) { /* "x=" is shortest args string */
tor_log(severity, LD_GENERAL, "'%s' is too short to be a k=v value.",
escaped(string));
return 0;
}
equal_sign_pos = strchr(string, '=');
if (!equal_sign_pos) {
tor_log(severity, LD_GENERAL, "'%s' is not a k=v value.", escaped(string));
return 0;
}
/* validate that the '=' is not in the beginning of the string. */
if (equal_sign_pos == string) {
tor_log(severity, LD_GENERAL, "'%s' is not a valid k=v value.",
escaped(string));
return 0;
}
return 1;
}
/** Return true if <b>string</b> represents a valid IPv4 adddress in
* 'a.b.c.d' form.
*/
int
string_is_valid_ipv4_address(const char *string)
{
struct in_addr addr;
return (tor_inet_pton(AF_INET,string,&addr) == 1);
}
/** Return true if <b>string</b> represents a valid IPv6 address in
* a form that inet_pton() can parse.
*/
int
string_is_valid_ipv6_address(const char *string)
{
struct in6_addr addr;
return (tor_inet_pton(AF_INET6,string,&addr) == 1);
}
/** Return true iff <b>string</b> matches a pattern of DNS names
* that we allow Tor clients to connect to.
*
* Note: This allows certain technically invalid characters ('_') to cope
* with misconfigured zones that have been encountered in the wild.
*/
int
string_is_valid_hostname(const char *string)
{
int result = 1;
smartlist_t *components;
components = smartlist_new();
smartlist_split_string(components,string,".",0,0);
SMARTLIST_FOREACH_BEGIN(components, char *, c) {
if ((c[0] == '-') || (*c == '_')) {
result = 0;
break;
}
/* Allow a single terminating '.' used rarely to indicate domains
* are FQDNs rather than relative. */
if ((c_sl_idx > 0) && (c_sl_idx + 1 == c_sl_len) && !*c) {
continue;
}
do {
if ((*c >= 'a' && *c <= 'z') ||
(*c >= 'A' && *c <= 'Z') ||
(*c >= '0' && *c <= '9') ||
(*c == '-') || (*c == '_'))
c++;
else
result = 0;
} while (result && *c);
} SMARTLIST_FOREACH_END(c);
SMARTLIST_FOREACH_BEGIN(components, char *, c) {
tor_free(c);
} SMARTLIST_FOREACH_END(c);
smartlist_free(components);
return result;
}
/** Return true iff the DIGEST256_LEN bytes in digest are all zero. */
int
tor_digest256_is_zero(const char *digest)
{
return tor_mem_is_zero(digest, DIGEST256_LEN);
}
/* Helper: common code to check whether the result of a strtol or strtoul or
* strtoll is correct. */
#define CHECK_STRTOX_RESULT() \
/* Did an overflow occur? */ \
if (errno == ERANGE) \
goto err; \
/* Was at least one character converted? */ \
if (endptr == s) \
goto err; \
/* Were there unexpected unconverted characters? */ \
if (!next && *endptr) \
goto err; \
/* Illogical (max, min) inputs? */ \
if (BUG(max < min)) \
goto err; \
/* Is r within limits? */ \
if (r < min || r > max) \
goto err; \
if (ok) *ok = 1; \
if (next) *next = endptr; \
return r; \
err: \
if (ok) *ok = 0; \
if (next) *next = endptr; \
return 0
/** Extract a long from the start of <b>s</b>, in the given numeric
* <b>base</b>. If <b>base</b> is 0, <b>s</b> is parsed as a decimal,
* octal, or hex number in the syntax of a C integer literal. If
* there is unconverted data and <b>next</b> is provided, set
* *<b>next</b> to the first unconverted character. An error has
* occurred if no characters are converted; or if there are
* unconverted characters and <b>next</b> is NULL; or if the parsed
* value is not between <b>min</b> and <b>max</b>. When no error
* occurs, return the parsed value and set *<b>ok</b> (if provided) to
* 1. When an error occurs, return 0 and set *<b>ok</b> (if provided)
* to 0.
*/
long
tor_parse_long(const char *s, int base, long min, long max,
int *ok, char **next)
{
char *endptr;
long r;
if (base < 0) {
if (ok)
*ok = 0;
return 0;
}
errno = 0;
r = strtol(s, &endptr, base);
CHECK_STRTOX_RESULT();
}
/** As tor_parse_long(), but return an unsigned long. */
unsigned long
tor_parse_ulong(const char *s, int base, unsigned long min,
unsigned long max, int *ok, char **next)
{
char *endptr;
unsigned long r;
if (base < 0) {
if (ok)
*ok = 0;
return 0;
}
errno = 0;
r = strtoul(s, &endptr, base);
CHECK_STRTOX_RESULT();
}
/** As tor_parse_long(), but return a double. */
double
tor_parse_double(const char *s, double min, double max, int *ok, char **next)
{
char *endptr;
double r;
errno = 0;
r = strtod(s, &endptr);
CHECK_STRTOX_RESULT();
}
/** As tor_parse_long, but return a uint64_t. Only base 10 is guaranteed to
* work for now. */
uint64_t
tor_parse_uint64(const char *s, int base, uint64_t min,
uint64_t max, int *ok, char **next)
{
char *endptr;
uint64_t r;
if (base < 0) {
if (ok)
*ok = 0;
return 0;
}
errno = 0;
#ifdef HAVE_STRTOULL
r = (uint64_t)strtoull(s, &endptr, base);
#elif defined(_WIN32)
#if defined(_MSC_VER) && _MSC_VER < 1300
tor_assert(base <= 10);
r = (uint64_t)_atoi64(s);
endptr = (char*)s;
while (TOR_ISSPACE(*endptr)) endptr++;
while (TOR_ISDIGIT(*endptr)) endptr++;
#else
r = (uint64_t)_strtoui64(s, &endptr, base);
#endif
#elif SIZEOF_LONG == 8
r = (uint64_t)strtoul(s, &endptr, base);
#else
#error "I don't know how to parse 64-bit numbers."
#endif
CHECK_STRTOX_RESULT();
}
/** Allocate and return a new string representing the contents of <b>s</b>,
* surrounded by quotes and using standard C escapes.
*
* Generally, we use this for logging values that come in over the network to
* keep them from tricking users, and for sending certain values to the
* controller.
*
* We trust values from the resolver, OS, configuration file, and command line
* to not be maliciously ill-formed. We validate incoming routerdescs and
* SOCKS requests and addresses from BEGIN cells as they're parsed;
* afterwards, we trust them as non-malicious.
*/
char *
esc_for_log(const char *s)
{
const char *cp;
char *result, *outp;
size_t len = 3;
if (!s) {
return tor_strdup("(null)");
}
for (cp = s; *cp; ++cp) {
switch (*cp) {
case '\\':
case '\"':
case '\'':
case '\r':
case '\n':
case '\t':
len += 2;
break;
default:
if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127)
++len;
else
len += 4;
break;
}
}
tor_assert(len <= SSIZE_MAX);
result = outp = tor_malloc(len);
*outp++ = '\"';
for (cp = s; *cp; ++cp) {
/* This assertion should always succeed, since we will write at least
* one char here, and two chars for closing quote and nul later */
tor_assert((outp-result) < (ssize_t)len-2);
switch (*cp) {
case '\\':
case '\"':
case '\'':
*outp++ = '\\';
*outp++ = *cp;
break;
case '\n':
*outp++ = '\\';
*outp++ = 'n';
break;
case '\t':
*outp++ = '\\';
*outp++ = 't';
break;
case '\r':
*outp++ = '\\';
*outp++ = 'r';
break;
default:
if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127) {
*outp++ = *cp;
} else {
tor_assert((outp-result) < (ssize_t)len-4);
tor_snprintf(outp, 5, "\\%03o", (int)(uint8_t) *cp);
outp += 4;
}
break;
}
}
tor_assert((outp-result) <= (ssize_t)len-2);
*outp++ = '\"';
*outp++ = 0;
return result;
}
/** Similar to esc_for_log. Allocate and return a new string representing
* the first n characters in <b>chars</b>, surround by quotes and using
* standard C escapes. If a NUL character is encountered in <b>chars</b>,
* the resulting string will be terminated there.
*/
char *
esc_for_log_len(const char *chars, size_t n)
{
char *string = tor_strndup(chars, n);
char *string_escaped = esc_for_log(string);
tor_free(string);
return string_escaped;
}
/** Allocate and return a new string representing the contents of <b>s</b>,
* surrounded by quotes and using standard C escapes.
*
* THIS FUNCTION IS NOT REENTRANT. Don't call it from outside the main
* thread. Also, each call invalidates the last-returned value, so don't
* try log_warn(LD_GENERAL, "%s %s", escaped(a), escaped(b));
*/
const char *
escaped(const char *s)
{
static char *escaped_val_ = NULL;
tor_free(escaped_val_);
if (s)
escaped_val_ = esc_for_log(s);
else
escaped_val_ = NULL;
return escaped_val_;
}
/** Return a newly allocated string equal to <b>string</b>, except that every
* character in <b>chars_to_escape</b> is preceded by a backslash. */
char *
tor_escape_str_for_pt_args(const char *string, const char *chars_to_escape)
{
char *new_string = NULL;
char *new_cp = NULL;
size_t length, new_length;
tor_assert(string);
length = strlen(string);
if (!length) /* If we were given the empty string, return the same. */
return tor_strdup("");
/* (new_length > SIZE_MAX) => ((length * 2) + 1 > SIZE_MAX) =>
(length*2 > SIZE_MAX - 1) => (length > (SIZE_MAX - 1)/2) */
if (length > (SIZE_MAX - 1)/2) /* check for overflow */
return NULL;
/* this should be enough even if all characters must be escaped */
new_length = (length * 2) + 1;
new_string = new_cp = tor_malloc(new_length);
while (*string) {
if (strchr(chars_to_escape, *string))
*new_cp++ = '\\';
*new_cp++ = *string++;
}
*new_cp = '\0'; /* NUL-terminate the new string */
return new_string;
}
/* =====
* Time
* ===== */
#define TOR_USEC_PER_SEC 1000000
/** Return the difference between start->tv_sec and end->tv_sec.
* Returns INT64_MAX on overflow and underflow.
*/
static int64_t
tv_secdiff_impl(const struct timeval *start, const struct timeval *end)
{
const int64_t s = (int64_t)start->tv_sec;
const int64_t e = (int64_t)end->tv_sec;
/* This may not be the most efficient way of implemeting this check,
* but it's easy to see that it's correct and doesn't overflow */
if (s > 0 && e < INT64_MIN + s) {
/* s is positive: equivalent to e - s < INT64_MIN, but without any
* overflow */
return INT64_MAX;
} else if (s < 0 && e > INT64_MAX + s) {
/* s is negative: equivalent to e - s > INT64_MAX, but without any
* overflow */
return INT64_MAX;
}
return e - s;
}
/** Return the number of microseconds elapsed between *start and *end.
* Returns LONG_MAX on overflow and underflow.
*/
long
tv_udiff(const struct timeval *start, const struct timeval *end)
{
/* Sanity check tv_usec */
if (start->tv_usec > TOR_USEC_PER_SEC || start->tv_usec < 0) {
log_warn(LD_GENERAL, "comparing times on microsecond detail with bad "
"start tv_usec: " I64_FORMAT " microseconds",
I64_PRINTF_ARG(start->tv_usec));
return LONG_MAX;
}
if (end->tv_usec > TOR_USEC_PER_SEC || end->tv_usec < 0) {
log_warn(LD_GENERAL, "comparing times on microsecond detail with bad "
"end tv_usec: " I64_FORMAT " microseconds",
I64_PRINTF_ARG(end->tv_usec));
return LONG_MAX;
}
/* Some BSDs have struct timeval.tv_sec 64-bit, but time_t (and long) 32-bit
*/
int64_t udiff;
const int64_t secdiff = tv_secdiff_impl(start, end);
/* end->tv_usec - start->tv_usec can be up to 1 second either way */
if (secdiff > (int64_t)(LONG_MAX/1000000 - 1) ||
secdiff < (int64_t)(LONG_MIN/1000000 + 1)) {
log_warn(LD_GENERAL, "comparing times on microsecond detail too far "
"apart: " I64_FORMAT " seconds", I64_PRINTF_ARG(secdiff));
return LONG_MAX;
}
/* we'll never get an overflow here, because we check that both usecs are
* between 0 and TV_USEC_PER_SEC. */
udiff = secdiff*1000000 + ((int64_t)end->tv_usec - (int64_t)start->tv_usec);
/* Some compilers are smart enough to work out this is a no-op on L64 */
#if SIZEOF_LONG < 8
if (udiff > (int64_t)LONG_MAX || udiff < (int64_t)LONG_MIN) {
return LONG_MAX;
}
#endif
return (long)udiff;
}
/** Return the number of milliseconds elapsed between *start and *end.
* If the tv_usec difference is 500, rounds away from zero.
* Returns LONG_MAX on overflow and underflow.
*/
long
tv_mdiff(const struct timeval *start, const struct timeval *end)
{
/* Sanity check tv_usec */
if (start->tv_usec > TOR_USEC_PER_SEC || start->tv_usec < 0) {
log_warn(LD_GENERAL, "comparing times on millisecond detail with bad "
"start tv_usec: " I64_FORMAT " microseconds",
I64_PRINTF_ARG(start->tv_usec));
return LONG_MAX;
}
if (end->tv_usec > TOR_USEC_PER_SEC || end->tv_usec < 0) {
log_warn(LD_GENERAL, "comparing times on millisecond detail with bad "
"end tv_usec: " I64_FORMAT " microseconds",
I64_PRINTF_ARG(end->tv_usec));
return LONG_MAX;
}
/* Some BSDs have struct timeval.tv_sec 64-bit, but time_t (and long) 32-bit
*/
int64_t mdiff;
const int64_t secdiff = tv_secdiff_impl(start, end);
/* end->tv_usec - start->tv_usec can be up to 1 second either way, but the
* mdiff calculation may add another temporary second for rounding.
* Whether this actually causes overflow depends on the compiler's constant
* folding and order of operations. */
if (secdiff > (int64_t)(LONG_MAX/1000 - 2) ||
secdiff < (int64_t)(LONG_MIN/1000 + 1)) {
log_warn(LD_GENERAL, "comparing times on millisecond detail too far "
"apart: " I64_FORMAT " seconds", I64_PRINTF_ARG(secdiff));
return LONG_MAX;
}
/* Subtract and round */
mdiff = secdiff*1000 +
/* We add a million usec here to ensure that the result is positive,
* so that the round-towards-zero behavior of the division will give
* the right result for rounding to the nearest msec. Later we subtract
* 1000 in order to get the correct result.
* We'll never get an overflow here, because we check that both usecs are
* between 0 and TV_USEC_PER_SEC. */
((int64_t)end->tv_usec - (int64_t)start->tv_usec + 500 + 1000000) / 1000
- 1000;
/* Some compilers are smart enough to work out this is a no-op on L64 */
#if SIZEOF_LONG < 8
if (mdiff > (int64_t)LONG_MAX || mdiff < (int64_t)LONG_MIN) {
return LONG_MAX;
}
#endif
return (long)mdiff;
}
/**
* Converts timeval to milliseconds.
*/
int64_t
tv_to_msec(const struct timeval *tv)
{
int64_t conv = ((int64_t)tv->tv_sec)*1000L;
/* Round ghetto-style */
conv += ((int64_t)tv->tv_usec+500)/1000L;
return conv;
}
/** Yield true iff <b>y</b> is a leap-year. */
#define IS_LEAPYEAR(y) (!(y % 4) && ((y % 100) || !(y % 400)))
/** Helper: Return the number of leap-days between Jan 1, y1 and Jan 1, y2. */
static int
n_leapdays(int year1, int year2)
{
--year1;
--year2;
return (year2/4 - year1/4) - (year2/100 - year1/100)
+ (year2/400 - year1/400);
}
/** Number of days per month in non-leap year; used by tor_timegm and
* parse_rfc1123_time. */
static const int days_per_month[] =
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
/** Compute a time_t given a struct tm. The result is given in UTC, and
* does not account for leap seconds. Return 0 on success, -1 on failure.
*/
int
tor_timegm(const struct tm *tm, time_t *time_out)
{
/* This is a pretty ironclad timegm implementation, snarfed from Python2.2.
* It's way more brute-force than fiddling with tzset().
*
* We use int64_t rather than time_t to avoid overflow on multiplication on
* platforms with 32-bit time_t. Since year is clipped to INT32_MAX, and
* since 365 * 24 * 60 * 60 is approximately 31 million, it's not possible
* for INT32_MAX years to overflow int64_t when converted to seconds. */
int64_t year, days, hours, minutes, seconds;
int i, invalid_year, dpm;
/* Initialize time_out to 0 for now, to avoid bad usage in case this function
fails and the caller ignores the return value. */
tor_assert(time_out);
*time_out = 0;
/* avoid int overflow on addition */
if (tm->tm_year < INT32_MAX-1900) {
year = tm->tm_year + 1900;
} else {
/* clamp year */
year = INT32_MAX;
}
invalid_year = (year < 1970 || tm->tm_year >= INT32_MAX-1900);
if (tm->tm_mon >= 0 && tm->tm_mon <= 11) {
dpm = days_per_month[tm->tm_mon];
if (tm->tm_mon == 1 && !invalid_year && IS_LEAPYEAR(tm->tm_year)) {
dpm = 29;
}
} else {
/* invalid month - default to 0 days per month */
dpm = 0;
}
if (invalid_year ||
tm->tm_mon < 0 || tm->tm_mon > 11 ||
tm->tm_mday < 1 || tm->tm_mday > dpm ||
tm->tm_hour < 0 || tm->tm_hour > 23 ||
tm->tm_min < 0 || tm->tm_min > 59 ||
tm->tm_sec < 0 || tm->tm_sec > 60) {
log_warn(LD_BUG, "Out-of-range argument to tor_timegm");
return -1;
}
days = 365 * (year-1970) + n_leapdays(1970,(int)year);
for (i = 0; i < tm->tm_mon; ++i)
days += days_per_month[i];
if (tm->tm_mon > 1 && IS_LEAPYEAR(year))
++days;
days += tm->tm_mday - 1;
hours = days*24 + tm->tm_hour;
minutes = hours*60 + tm->tm_min;
seconds = minutes*60 + tm->tm_sec;
/* Check that "seconds" will fit in a time_t. On platforms where time_t is
* 32-bit, this check will fail for dates in and after 2038.
*
* We already know that "seconds" can't be negative because "year" >= 1970 */
#if SIZEOF_TIME_T < 8
if (seconds < TIME_MIN || seconds > TIME_MAX) {
log_warn(LD_BUG, "Result does not fit in tor_timegm");
return -1;
}
#endif
*time_out = (time_t)seconds;
return 0;
}
/* strftime is locale-specific, so we need to replace those parts */
/** A c-locale array of 3-letter names of weekdays, starting with Sun. */
static const char *WEEKDAY_NAMES[] =
{ "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
/** A c-locale array of 3-letter names of months, starting with Jan. */
static const char *MONTH_NAMES[] =
{ "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
/** Set <b>buf</b> to the RFC1123 encoding of the UTC value of <b>t</b>.
* The buffer must be at least RFC1123_TIME_LEN+1 bytes long.
*
* (RFC1123 format is "Fri, 29 Sep 2006 15:54:20 GMT". Note the "GMT"
* rather than "UTC".)
*/
void
format_rfc1123_time(char *buf, time_t t)
{
struct tm tm;
tor_gmtime_r(&t, &tm);
strftime(buf, RFC1123_TIME_LEN+1, "___, %d ___ %Y %H:%M:%S GMT", &tm);
tor_assert(tm.tm_wday >= 0);
tor_assert(tm.tm_wday <= 6);
memcpy(buf, WEEKDAY_NAMES[tm.tm_wday], 3);
tor_assert(tm.tm_mon >= 0);
tor_assert(tm.tm_mon <= 11);
memcpy(buf+8, MONTH_NAMES[tm.tm_mon], 3);
}
/** Parse the (a subset of) the RFC1123 encoding of some time (in UTC) from
* <b>buf</b>, and store the result in *<b>t</b>.
*
* Note that we only accept the subset generated by format_rfc1123_time above,
* not the full range of formats suggested by RFC 1123.
*
* Return 0 on success, -1 on failure.
*/
int
parse_rfc1123_time(const char *buf, time_t *t)
{
struct tm tm;
char month[4];
char weekday[4];
int i, m, invalid_year;
unsigned tm_mday, tm_year, tm_hour, tm_min, tm_sec;
unsigned dpm;
if (strlen(buf) != RFC1123_TIME_LEN)
return -1;
memset(&tm, 0, sizeof(tm));
if (tor_sscanf(buf, "%3s, %2u %3s %u %2u:%2u:%2u GMT", weekday,
&tm_mday, month, &tm_year, &tm_hour,
&tm_min, &tm_sec) < 7) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL, "Got invalid RFC1123 time %s", esc);
tor_free(esc);
return -1;
}
m = -1;
for (i = 0; i < 12; ++i) {
if (!strcmp(month, MONTH_NAMES[i])) {
m = i;
break;
}
}
if (m<0) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL, "Got invalid RFC1123 time %s: No such month", esc);
tor_free(esc);
return -1;
}
tm.tm_mon = m;
invalid_year = (tm_year >= INT32_MAX || tm_year < 1970);
tor_assert(m >= 0 && m <= 11);
dpm = days_per_month[m];
if (m == 1 && !invalid_year && IS_LEAPYEAR(tm_year)) {
dpm = 29;
}
if (invalid_year || tm_mday < 1 || tm_mday > dpm ||
tm_hour > 23 || tm_min > 59 || tm_sec > 60) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL, "Got invalid RFC1123 time %s", esc);
tor_free(esc);
return -1;
}
tm.tm_mday = (int)tm_mday;
tm.tm_year = (int)tm_year;
tm.tm_hour = (int)tm_hour;
tm.tm_min = (int)tm_min;
tm.tm_sec = (int)tm_sec;
if (tm.tm_year < 1970) {
/* LCOV_EXCL_START
* XXXX I think this is dead code; we already checked for
* invalid_year above. */
tor_assert_nonfatal_unreached();
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL,
"Got invalid RFC1123 time %s. (Before 1970)", esc);
tor_free(esc);
return -1;
/* LCOV_EXCL_STOP */
}
tm.tm_year -= 1900;
return tor_timegm(&tm, t);
}
/** Set <b>buf</b> to the ISO8601 encoding of the local value of <b>t</b>.
* The buffer must be at least ISO_TIME_LEN+1 bytes long.
*
* (ISO8601 format is 2006-10-29 10:57:20)
*/
void
format_local_iso_time(char *buf, time_t t)
{
struct tm tm;
strftime(buf, ISO_TIME_LEN+1, "%Y-%m-%d %H:%M:%S", tor_localtime_r(&t, &tm));
}
/** Set <b>buf</b> to the ISO8601 encoding of the GMT value of <b>t</b>.
* The buffer must be at least ISO_TIME_LEN+1 bytes long.
*/
void
format_iso_time(char *buf, time_t t)
{
struct tm tm;
strftime(buf, ISO_TIME_LEN+1, "%Y-%m-%d %H:%M:%S", tor_gmtime_r(&t, &tm));
}
/** As format_iso_time, but use the yyyy-mm-ddThh:mm:ss format to avoid
* embedding an internal space. */
void
format_iso_time_nospace(char *buf, time_t t)
{
format_iso_time(buf, t);
buf[10] = 'T';
}
/** As format_iso_time_nospace, but include microseconds in decimal
* fixed-point format. Requires that buf be at least ISO_TIME_USEC_LEN+1
* bytes long. */
void
format_iso_time_nospace_usec(char *buf, const struct timeval *tv)
{
tor_assert(tv);
format_iso_time_nospace(buf, (time_t)tv->tv_sec);
tor_snprintf(buf+ISO_TIME_LEN, 8, ".%06d", (int)tv->tv_usec);
}
/** Given an ISO-formatted UTC time value (after the epoch) in <b>cp</b>,
* parse it and store its value in *<b>t</b>. Return 0 on success, -1 on
* failure. Ignore extraneous stuff in <b>cp</b> after the end of the time
* string, unless <b>strict</b> is set. */
int
parse_iso_time_(const char *cp, time_t *t, int strict)
{
struct tm st_tm;
unsigned int year=0, month=0, day=0, hour=0, minute=0, second=0;
int n_fields;
char extra_char;
n_fields = tor_sscanf(cp, "%u-%2u-%2u %2u:%2u:%2u%c", &year, &month,
&day, &hour, &minute, &second, &extra_char);
if (strict ? (n_fields != 6) : (n_fields < 6)) {
char *esc = esc_for_log(cp);
log_warn(LD_GENERAL, "ISO time %s was unparseable", esc);
tor_free(esc);
return -1;
}
if (year < 1970 || month < 1 || month > 12 || day < 1 || day > 31 ||
hour > 23 || minute > 59 || second > 60 || year >= INT32_MAX) {
char *esc = esc_for_log(cp);
log_warn(LD_GENERAL, "ISO time %s was nonsensical", esc);
tor_free(esc);
return -1;
}
st_tm.tm_year = (int)year-1900;
st_tm.tm_mon = month-1;
st_tm.tm_mday = day;
st_tm.tm_hour = hour;
st_tm.tm_min = minute;
st_tm.tm_sec = second;
st_tm.tm_wday = 0; /* Should be ignored. */
if (st_tm.tm_year < 70) {
/* LCOV_EXCL_START
* XXXX I think this is dead code; we already checked for
* year < 1970 above. */
tor_assert_nonfatal_unreached();
char *esc = esc_for_log(cp);
log_warn(LD_GENERAL, "Got invalid ISO time %s. (Before 1970)", esc);
tor_free(esc);
return -1;
/* LCOV_EXCL_STOP */
}
return tor_timegm(&st_tm, t);
}
/** Given an ISO-formatted UTC time value (after the epoch) in <b>cp</b>,
* parse it and store its value in *<b>t</b>. Return 0 on success, -1 on
* failure. Reject the string if any characters are present after the time.
*/
int
parse_iso_time(const char *cp, time_t *t)
{
return parse_iso_time_(cp, t, 1);
}
/** Given a <b>date</b> in one of the three formats allowed by HTTP (ugh),
* parse it into <b>tm</b>. Return 0 on success, negative on failure. */
int
parse_http_time(const char *date, struct tm *tm)
{
const char *cp;
char month[4];
char wkday[4];
int i;
unsigned tm_mday, tm_year, tm_hour, tm_min, tm_sec;
tor_assert(tm);
memset(tm, 0, sizeof(*tm));
/* First, try RFC1123 or RFC850 format: skip the weekday. */
if ((cp = strchr(date, ','))) {
++cp;
if (*cp != ' ')
return -1;
++cp;
if (tor_sscanf(cp, "%2u %3s %4u %2u:%2u:%2u GMT",
&tm_mday, month, &tm_year,
&tm_hour, &tm_min, &tm_sec) == 6) {
/* rfc1123-date */
tm_year -= 1900;
} else if (tor_sscanf(cp, "%2u-%3s-%2u %2u:%2u:%2u GMT",
&tm_mday, month, &tm_year,
&tm_hour, &tm_min, &tm_sec) == 6) {
/* rfc850-date */
} else {
return -1;
}
} else {
/* No comma; possibly asctime() format. */
if (tor_sscanf(date, "%3s %3s %2u %2u:%2u:%2u %4u",
wkday, month, &tm_mday,
&tm_hour, &tm_min, &tm_sec, &tm_year) == 7) {
tm_year -= 1900;
} else {
return -1;
}
}
tm->tm_mday = (int)tm_mday;
tm->tm_year = (int)tm_year;
tm->tm_hour = (int)tm_hour;
tm->tm_min = (int)tm_min;
tm->tm_sec = (int)tm_sec;
tm->tm_wday = 0; /* Leave this unset. */
month[3] = '\0';
/* Okay, now decode the month. */
/* set tm->tm_mon to dummy value so the check below fails. */
tm->tm_mon = -1;
for (i = 0; i < 12; ++i) {
if (!strcasecmp(MONTH_NAMES[i], month)) {
tm->tm_mon = i;
}
}
if (tm->tm_year < 0 ||
tm->tm_mon < 0 || tm->tm_mon > 11 ||
tm->tm_mday < 1 || tm->tm_mday > 31 ||
tm->tm_hour < 0 || tm->tm_hour > 23 ||
tm->tm_min < 0 || tm->tm_min > 59 ||
tm->tm_sec < 0 || tm->tm_sec > 60)
return -1; /* Out of range, or bad month. */
return 0;
}
/** Given an <b>interval</b> in seconds, try to write it to the
* <b>out_len</b>-byte buffer in <b>out</b> in a human-readable form.
* Return 0 on success, -1 on failure.
*/
int
format_time_interval(char *out, size_t out_len, long interval)
{
/* We only report seconds if there's no hours. */
long sec = 0, min = 0, hour = 0, day = 0;
/* -LONG_MIN is LONG_MAX + 1, which causes signed overflow */
if (interval < -LONG_MAX)
interval = LONG_MAX;
else if (interval < 0)
interval = -interval;
if (interval >= 86400) {
day = interval / 86400;
interval %= 86400;
}
if (interval >= 3600) {
hour = interval / 3600;
interval %= 3600;
}
if (interval >= 60) {
min = interval / 60;
interval %= 60;
}
sec = interval;
if (day) {
return tor_snprintf(out, out_len, "%ld days, %ld hours, %ld minutes",
day, hour, min);
} else if (hour) {
return tor_snprintf(out, out_len, "%ld hours, %ld minutes", hour, min);
} else if (min) {
return tor_snprintf(out, out_len, "%ld minutes, %ld seconds", min, sec);
} else {
return tor_snprintf(out, out_len, "%ld seconds", sec);
}
}
/* =====
* Cached time
* ===== */
#ifndef TIME_IS_FAST
/** Cached estimate of the current time. Updated around once per second;
* may be a few seconds off if we are really busy. This is a hack to avoid
* calling time(NULL) (which not everybody has optimized) on critical paths.
*/
static time_t cached_approx_time = 0;
/** Return a cached estimate of the current time from when
* update_approx_time() was last called. This is a hack to avoid calling
* time(NULL) on critical paths: please do not even think of calling it
* anywhere else. */
time_t
approx_time(void)
{
return cached_approx_time;
}
/** Update the cached estimate of the current time. This function SHOULD be
* called once per second, and MUST be called before the first call to
* get_approx_time. */
void
update_approx_time(time_t now)
{
cached_approx_time = now;
}
#endif
/* =====
* Rate limiting
* ===== */
/** If the rate-limiter <b>lim</b> is ready at <b>now</b>, return the number
* of calls to rate_limit_is_ready (including this one!) since the last time
* rate_limit_is_ready returned nonzero. Otherwise return 0.
* If the call number hits <b>RATELIM_TOOMANY</b> limit, drop a warning
* about this event and stop counting. */
static int
rate_limit_is_ready(ratelim_t *lim, time_t now)
{
if (lim->rate + lim->last_allowed <= now) {
int res = lim->n_calls_since_last_time + 1;
lim->last_allowed = now;
lim->n_calls_since_last_time = 0;
return res;
} else {
if (lim->n_calls_since_last_time <= RATELIM_TOOMANY) {
++lim->n_calls_since_last_time;
}
return 0;
}
}
/** If the rate-limiter <b>lim</b> is ready at <b>now</b>, return a newly
* allocated string indicating how many messages were suppressed, suitable to
* append to a log message. Otherwise return NULL. */
char *
rate_limit_log(ratelim_t *lim, time_t now)
{
int n;
if ((n = rate_limit_is_ready(lim, now))) {
if (n == 1) {
return tor_strdup("");
} else {
char *cp=NULL;
const char *opt_over = (n >= RATELIM_TOOMANY) ? "over " : "";
/* XXXX this is not exactly correct: the messages could have occurred
* any time between the old value of lim->allowed and now. */
tor_asprintf(&cp,
" [%s%d similar message(s) suppressed in last %d seconds]",
opt_over, n-1, lim->rate);
return cp;
}
} else {
return NULL;
}
}
/* =====
* File helpers
* ===== */
/** Write <b>count</b> bytes from <b>buf</b> to <b>fd</b>. <b>isSocket</b>
* must be 1 if fd was returned by socket() or accept(), and 0 if fd
* was returned by open(). Return the number of bytes written, or -1
* on error. Only use if fd is a blocking fd. */
ssize_t
write_all(tor_socket_t fd, const char *buf, size_t count, int isSocket)
{
size_t written = 0;
ssize_t result;
tor_assert(count < SSIZE_MAX);
while (written != count) {
if (isSocket)
result = tor_socket_send(fd, buf+written, count-written, 0);
else
result = write((int)fd, buf+written, count-written);
if (result<0)
return -1;
written += result;
}
return (ssize_t)count;
}
/** Read from <b>fd</b> to <b>buf</b>, until we get <b>count</b> bytes
* or reach the end of the file. <b>isSocket</b> must be 1 if fd
* was returned by socket() or accept(), and 0 if fd was returned by
* open(). Return the number of bytes read, or -1 on error. Only use
* if fd is a blocking fd. */
ssize_t
read_all(tor_socket_t fd, char *buf, size_t count, int isSocket)
{
size_t numread = 0;
ssize_t result;
if (count > SIZE_T_CEILING || count > SSIZE_MAX) {
errno = EINVAL;
return -1;
}
while (numread != count) {
if (isSocket)
result = tor_socket_recv(fd, buf+numread, count-numread, 0);
else
result = read((int)fd, buf+numread, count-numread);
if (result<0)
return -1;
else if (result == 0)
break;
numread += result;
}
return (ssize_t)numread;
}
/*
* Filesystem operations.
*/
/** Clean up <b>name</b> so that we can use it in a call to "stat". On Unix,
* we do nothing. On Windows, we remove a trailing slash, unless the path is
* the root of a disk. */
static void
clean_name_for_stat(char *name)
{
#ifdef _WIN32
size_t len = strlen(name);
if (!len)
return;
if (name[len-1]=='\\' || name[len-1]=='/') {
if (len == 1 || (len==3 && name[1]==':'))
return;
name[len-1]='\0';
}
#else
(void)name;
#endif
}
/** Wrapper for unlink() to make it mockable for the test suite; returns 0
* if unlinking the file succeeded, -1 and sets errno if unlinking fails.
*/
MOCK_IMPL(int,
tor_unlink,(const char *pathname))
{
return unlink(pathname);
}
/** Return:
* FN_ERROR if filename can't be read, is NULL, or is zero-length,
* FN_NOENT if it doesn't exist,
* FN_FILE if it is a non-empty regular file, or a FIFO on unix-like systems,
* FN_EMPTY for zero-byte regular files,
* FN_DIR if it's a directory, and
* FN_ERROR for any other file type.
* On FN_ERROR and FN_NOENT, sets errno. (errno is not set when FN_ERROR
* is returned due to an unhandled file type.) */
file_status_t
file_status(const char *fname)
{
struct stat st;
char *f;
int r;
if (!fname || strlen(fname) == 0) {
return FN_ERROR;
}
f = tor_strdup(fname);
clean_name_for_stat(f);
log_debug(LD_FS, "stat()ing %s", f);
r = stat(sandbox_intern_string(f), &st);
tor_free(f);
if (r) {
if (errno == ENOENT) {
return FN_NOENT;
}
return FN_ERROR;
}
if (st.st_mode & S_IFDIR) {
return FN_DIR;
} else if (st.st_mode & S_IFREG) {
if (st.st_size > 0) {
return FN_FILE;
} else if (st.st_size == 0) {
return FN_EMPTY;
} else {
return FN_ERROR;
}
#ifndef _WIN32
} else if (st.st_mode & S_IFIFO) {
return FN_FILE;
#endif
} else {
return FN_ERROR;
}
}
/** Check whether <b>dirname</b> exists and is private. If yes return 0.
* If <b>dirname</b> does not exist:
* - if <b>check</b>&CPD_CREATE, try to create it and return 0 on success.
* - if <b>check</b>&CPD_CHECK, and we think we can create it, return 0.
* - if <b>check</b>&CPD_CHECK is false, and the directory exists, return 0.
* - otherwise, return -1.
* If CPD_GROUP_OK is set, then it's okay if the directory
* is group-readable, but in all cases we create the directory mode 0700.
* If CPD_GROUP_READ is set, existing directory behaves as CPD_GROUP_OK and
* if the directory is created it will use mode 0750 with group read
* permission. Group read privileges also assume execute permission
* as norm for directories. If CPD_CHECK_MODE_ONLY is set, then we don't
* alter the directory permissions if they are too permissive:
* we just return -1.
* When effective_user is not NULL, check permissions against the given user
* and its primary group.
*/
MOCK_IMPL(int,
check_private_dir,(const char *dirname, cpd_check_t check,
const char *effective_user))
{
int r;
struct stat st;
tor_assert(dirname);
#ifndef _WIN32
int fd;
const struct passwd *pw = NULL;
uid_t running_uid;
gid_t running_gid;
/*
* Goal is to harden the implementation by removing any
* potential for race between stat() and chmod().
* chmod() accepts filename as argument. If an attacker can move
* the file between stat() and chmod(), a potential race exists.
*
* Several suggestions taken from:
* https://developer.apple.com/library/mac/documentation/
* Security/Conceptual/SecureCodingGuide/Articles/RaceConditions.html
*/
/* Open directory.
* O_NOFOLLOW to ensure that it does not follow symbolic links */
fd = open(sandbox_intern_string(dirname), O_NOFOLLOW);
/* Was there an error? Maybe the directory does not exist? */
if (fd == -1) {
if (errno != ENOENT) {
/* Other directory error */
log_warn(LD_FS, "Directory %s cannot be read: %s", dirname,
strerror(errno));
return -1;
}
/* Received ENOENT: Directory does not exist */
/* Should we create the directory? */
if (check & CPD_CREATE) {
log_info(LD_GENERAL, "Creating directory %s", dirname);
if (check & CPD_GROUP_READ) {
r = mkdir(dirname, 0750);
} else {
r = mkdir(dirname, 0700);
}
/* check for mkdir() error */
if (r) {
log_warn(LD_FS, "Error creating directory %s: %s", dirname,
strerror(errno));
return -1;
}
/* we just created the directory. try to open it again.
* permissions on the directory will be checked again below.*/
fd = open(sandbox_intern_string(dirname), O_NOFOLLOW);
if (fd == -1)
return -1;
else
close(fd);
} else if (!(check & CPD_CHECK)) {
log_warn(LD_FS, "Directory %s does not exist.", dirname);
return -1;
}
/* XXXX In the case where check==CPD_CHECK, we should look at the
* parent directory a little harder. */
return 0;
}
tor_assert(fd >= 0);
//f = tor_strdup(dirname);
//clean_name_for_stat(f);
log_debug(LD_FS, "stat()ing %s", dirname);
//r = stat(sandbox_intern_string(f), &st);
r = fstat(fd, &st);
if (r == -1) {
log_warn(LD_FS, "fstat() on directory %s failed.", dirname);
close(fd);
return -1;
}
//tor_free(f);
/* check that dirname is a directory */
if (!(st.st_mode & S_IFDIR)) {
log_warn(LD_FS, "%s is not a directory", dirname);
close(fd);
return -1;
}
if (effective_user) {
/* Look up the user and group information.
* If we have a problem, bail out. */
pw = tor_getpwnam(effective_user);
if (pw == NULL) {
log_warn(LD_CONFIG, "Error setting configured user: %s not found",
effective_user);
close(fd);
return -1;
}
running_uid = pw->pw_uid;
running_gid = pw->pw_gid;
} else {
running_uid = getuid();
running_gid = getgid();
}
if (st.st_uid != running_uid) {
const struct passwd *pw_uid = NULL;
char *process_ownername = NULL;
pw_uid = tor_getpwuid(running_uid);
process_ownername = pw_uid ? tor_strdup(pw_uid->pw_name) :
tor_strdup("<unknown>");
pw_uid = tor_getpwuid(st.st_uid);
log_warn(LD_FS, "%s is not owned by this user (%s, %d) but by "
"%s (%d). Perhaps you are running Tor as the wrong user?",
dirname, process_ownername, (int)running_uid,
pw ? pw->pw_name : "<unknown>", (int)st.st_uid);
tor_free(process_ownername);
close(fd);
return -1;
}
if ( (check & (CPD_GROUP_OK|CPD_GROUP_READ))
&& (st.st_gid != running_gid) && (st.st_gid != 0)) {
struct group *gr;
char *process_groupname = NULL;
gr = getgrgid(running_gid);
process_groupname = gr ? tor_strdup(gr->gr_name) : tor_strdup("<unknown>");
gr = getgrgid(st.st_gid);
log_warn(LD_FS, "%s is not owned by this group (%s, %d) but by group "
"%s (%d). Are you running Tor as the wrong user?",
dirname, process_groupname, (int)running_gid,
gr ? gr->gr_name : "<unknown>", (int)st.st_gid);
tor_free(process_groupname);
close(fd);
return -1;
}
unsigned unwanted_bits = 0;
if (check & (CPD_GROUP_OK|CPD_GROUP_READ)) {
unwanted_bits = 0027;
} else {
unwanted_bits = 0077;
}
unsigned check_bits_filter = ~0;
if (check & CPD_RELAX_DIRMODE_CHECK) {
check_bits_filter = 0022;
}
if ((st.st_mode & unwanted_bits & check_bits_filter) != 0) {
unsigned new_mode;
if (check & CPD_CHECK_MODE_ONLY) {
log_warn(LD_FS, "Permissions on directory %s are too permissive.",
dirname);
close(fd);
return -1;
}
log_warn(LD_FS, "Fixing permissions on directory %s", dirname);
new_mode = st.st_mode;
new_mode |= 0700; /* Owner should have rwx */
if (check & CPD_GROUP_READ) {
new_mode |= 0050; /* Group should have rx */
}
new_mode &= ~unwanted_bits; /* Clear the bits that we didn't want set...*/
if (fchmod(fd, new_mode)) {
log_warn(LD_FS, "Could not chmod directory %s: %s", dirname,
strerror(errno));
close(fd);
return -1;
} else {
close(fd);
return 0;
}
}
close(fd);
#else
/* Win32 case: we can't open() a directory. */
(void)effective_user;
char *f = tor_strdup(dirname);
clean_name_for_stat(f);
log_debug(LD_FS, "stat()ing %s", f);
r = stat(sandbox_intern_string(f), &st);
tor_free(f);
if (r) {
if (errno != ENOENT) {
log_warn(LD_FS, "Directory %s cannot be read: %s", dirname,
strerror(errno));
return -1;
}
if (check & CPD_CREATE) {
log_info(LD_GENERAL, "Creating directory %s", dirname);
r = mkdir(dirname);
if (r) {
log_warn(LD_FS, "Error creating directory %s: %s", dirname,
strerror(errno));
return -1;
}
} else if (!(check & CPD_CHECK)) {
log_warn(LD_FS, "Directory %s does not exist.", dirname);
return -1;
}
return 0;
}
if (!(st.st_mode & S_IFDIR)) {
log_warn(LD_FS, "%s is not a directory", dirname);
return -1;
}
#endif
return 0;
}
/** Create a file named <b>fname</b> with the contents <b>str</b>. Overwrite
* the previous <b>fname</b> if possible. Return 0 on success, -1 on failure.
*
* This function replaces the old file atomically, if possible. This
* function, and all other functions in util.c that create files, create them
* with mode 0600.
*/
MOCK_IMPL(int,
write_str_to_file,(const char *fname, const char *str, int bin))
{
#ifdef _WIN32
if (!bin && strchr(str, '\r')) {
log_warn(LD_BUG,
"We're writing a text string that already contains a CR to %s",
escaped(fname));
}
#endif
return write_bytes_to_file(fname, str, strlen(str), bin);
}
/** Represents a file that we're writing to, with support for atomic commit:
* we can write into a temporary file, and either remove the file on
* failure, or replace the original file on success. */
struct open_file_t {
char *tempname; /**< Name of the temporary file. */
char *filename; /**< Name of the original file. */
unsigned rename_on_close:1; /**< Are we using the temporary file or not? */
unsigned binary:1; /**< Did we open in binary mode? */
int fd; /**< fd for the open file. */
FILE *stdio_file; /**< stdio wrapper for <b>fd</b>. */
};
/** Try to start writing to the file in <b>fname</b>, passing the flags
* <b>open_flags</b> to the open() syscall, creating the file (if needed) with
* access value <b>mode</b>. If the O_APPEND flag is set, we append to the
* original file. Otherwise, we open a new temporary file in the same
* directory, and either replace the original or remove the temporary file
* when we're done.
*
* Return the fd for the newly opened file, and store working data in
* *<b>data_out</b>. The caller should not close the fd manually:
* instead, call finish_writing_to_file() or abort_writing_to_file().
* Returns -1 on failure.
*
* NOTE: When not appending, the flags O_CREAT and O_TRUNC are treated
* as true and the flag O_EXCL is treated as false.
*
* NOTE: Ordinarily, O_APPEND means "seek to the end of the file before each
* write()". We don't do that.
*/
int
start_writing_to_file(const char *fname, int open_flags, int mode,
open_file_t **data_out)
{
open_file_t *new_file = tor_malloc_zero(sizeof(open_file_t));
const char *open_name;
int append = 0;
tor_assert(fname);
tor_assert(data_out);
#if (O_BINARY != 0 && O_TEXT != 0)
tor_assert((open_flags & (O_BINARY|O_TEXT)) != 0);
#endif
new_file->fd = -1;
new_file->filename = tor_strdup(fname);
if (open_flags & O_APPEND) {
open_name = fname;
new_file->rename_on_close = 0;
append = 1;
open_flags &= ~O_APPEND;
} else {
tor_asprintf(&new_file->tempname, "%s.tmp", fname);
open_name = new_file->tempname;
/* We always replace an existing temporary file if there is one. */
open_flags |= O_CREAT|O_TRUNC;
open_flags &= ~O_EXCL;
new_file->rename_on_close = 1;
}
#if O_BINARY != 0
if (open_flags & O_BINARY)
new_file->binary = 1;
#endif
new_file->fd = tor_open_cloexec(open_name, open_flags, mode);
if (new_file->fd < 0) {
log_warn(LD_FS, "Couldn't open \"%s\" (%s) for writing: %s",
open_name, fname, strerror(errno));
goto err;
}
if (append) {
if (tor_fd_seekend(new_file->fd) < 0) {
log_warn(LD_FS, "Couldn't seek to end of file \"%s\": %s", open_name,
strerror(errno));
goto err;
}
}
*data_out = new_file;
return new_file->fd;
err:
if (new_file->fd >= 0)
close(new_file->fd);
*data_out = NULL;
tor_free(new_file->filename);
tor_free(new_file->tempname);
tor_free(new_file);
return -1;
}
/** Given <b>file_data</b> from start_writing_to_file(), return a stdio FILE*
* that can be used to write to the same file. The caller should not mix
* stdio calls with non-stdio calls. */
FILE *
fdopen_file(open_file_t *file_data)
{
tor_assert(file_data);
if (file_data->stdio_file)
return file_data->stdio_file;
tor_assert(file_data->fd >= 0);
if (!(file_data->stdio_file = fdopen(file_data->fd,
file_data->binary?"ab":"a"))) {
log_warn(LD_FS, "Couldn't fdopen \"%s\" [%d]: %s", file_data->filename,
file_data->fd, strerror(errno));
}
return file_data->stdio_file;
}
/** Combines start_writing_to_file with fdopen_file(): arguments are as
* for start_writing_to_file, but */
FILE *
start_writing_to_stdio_file(const char *fname, int open_flags, int mode,
open_file_t **data_out)
{
FILE *res;
if (start_writing_to_file(fname, open_flags, mode, data_out)<0)
return NULL;
if (!(res = fdopen_file(*data_out))) {
abort_writing_to_file(*data_out);
*data_out = NULL;
}
return res;
}
/** Helper function: close and free the underlying file and memory in
* <b>file_data</b>. If we were writing into a temporary file, then delete
* that file (if abort_write is true) or replaces the target file with
* the temporary file (if abort_write is false). */
static int
finish_writing_to_file_impl(open_file_t *file_data, int abort_write)
{
int r = 0;
tor_assert(file_data && file_data->filename);
if (file_data->stdio_file) {
if (fclose(file_data->stdio_file)) {
log_warn(LD_FS, "Error closing \"%s\": %s", file_data->filename,
strerror(errno));
abort_write = r = -1;
}
} else if (file_data->fd >= 0 && close(file_data->fd) < 0) {
log_warn(LD_FS, "Error flushing \"%s\": %s", file_data->filename,
strerror(errno));
abort_write = r = -1;
}
if (file_data->rename_on_close) {
tor_assert(file_data->tempname && file_data->filename);
if (abort_write) {
int res = unlink(file_data->tempname);
if (res != 0) {
/* We couldn't unlink and we'll leave a mess behind */
log_warn(LD_FS, "Failed to unlink %s: %s",
file_data->tempname, strerror(errno));
r = -1;
}
} else {
tor_assert(strcmp(file_data->filename, file_data->tempname));
if (replace_file(file_data->tempname, file_data->filename)) {
log_warn(LD_FS, "Error replacing \"%s\": %s", file_data->filename,
strerror(errno));
r = -1;
}
}
}
tor_free(file_data->filename);
tor_free(file_data->tempname);
tor_free(file_data);
return r;
}
/** Finish writing to <b>file_data</b>: close the file handle, free memory as
* needed, and if using a temporary file, replace the original file with
* the temporary file. */
int
finish_writing_to_file(open_file_t *file_data)
{
return finish_writing_to_file_impl(file_data, 0);
}
/** Finish writing to <b>file_data</b>: close the file handle, free memory as
* needed, and if using a temporary file, delete it. */
int
abort_writing_to_file(open_file_t *file_data)
{
return finish_writing_to_file_impl(file_data, 1);
}
/** Helper: given a set of flags as passed to open(2), open the file
* <b>fname</b> and write all the sized_chunk_t structs in <b>chunks</b> to
* the file. Do so as atomically as possible e.g. by opening temp files and
* renaming. */
static int
write_chunks_to_file_impl(const char *fname, const smartlist_t *chunks,
int open_flags)
{
open_file_t *file = NULL;
int fd;
ssize_t result;
fd = start_writing_to_file(fname, open_flags, 0600, &file);
if (fd<0)
return -1;
SMARTLIST_FOREACH(chunks, sized_chunk_t *, chunk,
{
result = write_all(fd, chunk->bytes, chunk->len, 0);
if (result < 0) {
log_warn(LD_FS, "Error writing to \"%s\": %s", fname,
strerror(errno));
goto err;
}
tor_assert((size_t)result == chunk->len);
});
return finish_writing_to_file(file);
err:
abort_writing_to_file(file);
return -1;
}
/** Given a smartlist of sized_chunk_t, write them to a file
* <b>fname</b>, overwriting or creating the file as necessary.
* If <b>no_tempfile</b> is 0 then the file will be written
* atomically. */
int
write_chunks_to_file(const char *fname, const smartlist_t *chunks, int bin,
int no_tempfile)
{
int flags = OPEN_FLAGS_REPLACE|(bin?O_BINARY:O_TEXT);
if (no_tempfile) {
/* O_APPEND stops write_chunks_to_file from using tempfiles */
flags |= O_APPEND;
}
return write_chunks_to_file_impl(fname, chunks, flags);
}
/** Write <b>len</b> bytes, starting at <b>str</b>, to <b>fname</b>
using the open() flags passed in <b>flags</b>. */
static int
write_bytes_to_file_impl(const char *fname, const char *str, size_t len,
int flags)
{
int r;
sized_chunk_t c = { str, len };
smartlist_t *chunks = smartlist_new();
smartlist_add(chunks, &c);
r = write_chunks_to_file_impl(fname, chunks, flags);
smartlist_free(chunks);
return r;
}
/** As write_str_to_file, but does not assume a NUL-terminated
* string. Instead, we write <b>len</b> bytes, starting at <b>str</b>. */
MOCK_IMPL(int,
write_bytes_to_file,(const char *fname, const char *str, size_t len,
int bin))
{
return write_bytes_to_file_impl(fname, str, len,
OPEN_FLAGS_REPLACE|(bin?O_BINARY:O_TEXT));
}
/** As write_bytes_to_file, but if the file already exists, append the bytes
* to the end of the file instead of overwriting it. */
int
append_bytes_to_file(const char *fname, const char *str, size_t len,
int bin)
{
return write_bytes_to_file_impl(fname, str, len,
OPEN_FLAGS_APPEND|(bin?O_BINARY:O_TEXT));
}
/** Like write_str_to_file(), but also return -1 if there was a file
already residing in <b>fname</b>. */
int
write_bytes_to_new_file(const char *fname, const char *str, size_t len,
int bin)
{
return write_bytes_to_file_impl(fname, str, len,
OPEN_FLAGS_DONT_REPLACE|
(bin?O_BINARY:O_TEXT));
}
/**
* Read the contents of the open file <b>fd</b> presuming it is a FIFO
* (or similar) file descriptor for which the size of the file isn't
* known ahead of time. Return NULL on failure, and a NUL-terminated
* string on success. On success, set <b>sz_out</b> to the number of
* bytes read.
*/
char *
read_file_to_str_until_eof(int fd, size_t max_bytes_to_read, size_t *sz_out)
{
ssize_t r;
size_t pos = 0;
char *string = NULL;
size_t string_max = 0;
if (max_bytes_to_read+1 >= SIZE_T_CEILING) {
errno = EINVAL;
return NULL;
}
do {
/* XXXX This "add 1K" approach is a little goofy; if we care about
* performance here, we should be doubling. But in practice we shouldn't
* be using this function on big files anyway. */
string_max = pos + 1024;
if (string_max > max_bytes_to_read)
string_max = max_bytes_to_read + 1;
string = tor_realloc(string, string_max);
r = read(fd, string + pos, string_max - pos - 1);
if (r < 0) {
int save_errno = errno;
tor_free(string);
errno = save_errno;
return NULL;
}
pos += r;
} while (r > 0 && pos < max_bytes_to_read);
tor_assert(pos < string_max);
*sz_out = pos;
string[pos] = '\0';
return string;
}
/** Read the contents of <b>filename</b> into a newly allocated
* string; return the string on success or NULL on failure.
*
* If <b>stat_out</b> is provided, store the result of stat()ing the
* file into <b>stat_out</b>.
*
* If <b>flags</b> &amp; RFTS_BIN, open the file in binary mode.
* If <b>flags</b> &amp; RFTS_IGNORE_MISSING, don't warn if the file
* doesn't exist.
*/
/*
* This function <em>may</em> return an erroneous result if the file
* is modified while it is running, but must not crash or overflow.
* Right now, the error case occurs when the file length grows between
* the call to stat and the call to read_all: the resulting string will
* be truncated.
*/
MOCK_IMPL(char *,
read_file_to_str, (const char *filename, int flags, struct stat *stat_out))
{
int fd; /* router file */
struct stat statbuf;
char *string;
ssize_t r;
int bin = flags & RFTS_BIN;
tor_assert(filename);
fd = tor_open_cloexec(filename,O_RDONLY|(bin?O_BINARY:O_TEXT),0);
if (fd<0) {
int severity = LOG_WARN;
int save_errno = errno;
if (errno == ENOENT && (flags & RFTS_IGNORE_MISSING))
severity = LOG_INFO;
log_fn(severity, LD_FS,"Could not open \"%s\": %s",filename,
strerror(errno));
errno = save_errno;
return NULL;
}
if (fstat(fd, &statbuf)<0) {
int save_errno = errno;
close(fd);
log_warn(LD_FS,"Could not fstat \"%s\".",filename);
errno = save_errno;
return NULL;
}
#ifndef _WIN32
/** When we detect that we're reading from a FIFO, don't read more than
* this many bytes. It's insane overkill for most uses. */
#define FIFO_READ_MAX (1024*1024)
if (S_ISFIFO(statbuf.st_mode)) {
size_t sz = 0;
string = read_file_to_str_until_eof(fd, FIFO_READ_MAX, &sz);
int save_errno = errno;
if (string && stat_out) {
statbuf.st_size = sz;
memcpy(stat_out, &statbuf, sizeof(struct stat));
}
close(fd);
if (!string)
errno = save_errno;
return string;
}
#endif
if ((uint64_t)(statbuf.st_size)+1 >= SIZE_T_CEILING) {
close(fd);
errno = EINVAL;
return NULL;
}
string = tor_malloc((size_t)(statbuf.st_size+1));
r = read_all(fd,string,(size_t)statbuf.st_size,0);
if (r<0) {
int save_errno = errno;
log_warn(LD_FS,"Error reading from file \"%s\": %s", filename,
strerror(errno));
tor_free(string);
close(fd);
errno = save_errno;
return NULL;
}
string[r] = '\0'; /* NUL-terminate the result. */
#if defined(_WIN32) || defined(__CYGWIN__)
if (!bin && strchr(string, '\r')) {
log_debug(LD_FS, "We didn't convert CRLF to LF as well as we hoped "
"when reading %s. Coping.",
filename);
tor_strstrip(string, "\r");
r = strlen(string);
}
if (!bin) {
statbuf.st_size = (size_t) r;
} else
#endif
if (r != statbuf.st_size) {
/* Unless we're using text mode on win32, we'd better have an exact
* match for size. */
int save_errno = errno;
log_warn(LD_FS,"Could read only %d of %ld bytes of file \"%s\".",
(int)r, (long)statbuf.st_size,filename);
tor_free(string);
close(fd);
errno = save_errno;
return NULL;
}
close(fd);
if (stat_out) {
memcpy(stat_out, &statbuf, sizeof(struct stat));
}
return string;
}
#define TOR_ISODIGIT(c) ('0' <= (c) && (c) <= '7')
/** Given a c-style double-quoted escaped string in <b>s</b>, extract and
* decode its contents into a newly allocated string. On success, assign this
* string to *<b>result</b>, assign its length to <b>size_out</b> (if
* provided), and return a pointer to the position in <b>s</b> immediately
* after the string. On failure, return NULL.
*/
const char *
unescape_string(const char *s, char **result, size_t *size_out)
{
const char *cp;
char *out;
if (s[0] != '\"')
return NULL;
cp = s+1;
while (1) {
switch (*cp) {
case '\0':
case '\n':
return NULL;
case '\"':
goto end_of_loop;
case '\\':
if (cp[1] == 'x' || cp[1] == 'X') {
if (!(TOR_ISXDIGIT(cp[2]) && TOR_ISXDIGIT(cp[3])))
return NULL;
cp += 4;
} else if (TOR_ISODIGIT(cp[1])) {
cp += 2;
if (TOR_ISODIGIT(*cp)) ++cp;
if (TOR_ISODIGIT(*cp)) ++cp;
} else if (cp[1] == 'n' || cp[1] == 'r' || cp[1] == 't' || cp[1] == '"'
|| cp[1] == '\\' || cp[1] == '\'') {
cp += 2;
} else {
return NULL;
}
break;
default:
++cp;
break;
}
}
end_of_loop:
out = *result = tor_malloc(cp-s + 1);
cp = s+1;
while (1) {
switch (*cp)
{
case '\"':
*out = '\0';
if (size_out) *size_out = out - *result;
return cp+1;
case '\0':
/* LCOV_EXCL_START -- we caught this in parse_config_from_line. */
tor_fragile_assert();
tor_free(*result);
return NULL;
/* LCOV_EXCL_STOP */
case '\\':
switch (cp[1])
{
case 'n': *out++ = '\n'; cp += 2; break;
case 'r': *out++ = '\r'; cp += 2; break;
case 't': *out++ = '\t'; cp += 2; break;
case 'x': case 'X':
{
int x1, x2;
x1 = hex_decode_digit(cp[2]);
x2 = hex_decode_digit(cp[3]);
if (x1 == -1 || x2 == -1) {
/* LCOV_EXCL_START */
/* we caught this above in the initial loop. */
tor_assert_nonfatal_unreached();
tor_free(*result);
return NULL;
/* LCOV_EXCL_STOP */
}
*out++ = ((x1<<4) + x2);
cp += 4;
}
break;
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7':
{
int n = cp[1]-'0';
cp += 2;
if (TOR_ISODIGIT(*cp)) { n = n*8 + *cp-'0'; cp++; }
if (TOR_ISODIGIT(*cp)) { n = n*8 + *cp-'0'; cp++; }
if (n > 255) { tor_free(*result); return NULL; }
*out++ = (char)n;
}
break;
case '\'':
case '\"':
case '\\':
case '\?':
*out++ = cp[1];
cp += 2;
break;
default:
/* LCOV_EXCL_START */
/* we caught this above in the initial loop. */
tor_assert_nonfatal_unreached();
tor_free(*result); return NULL;
/* LCOV_EXCL_STOP */
}
break;
default:
*out++ = *cp++;
}
}
}
/** Given a string containing part of a configuration file or similar format,
* advance past comments and whitespace and try to parse a single line. If we
* parse a line successfully, set *<b>key_out</b> to a new string holding the
* key portion and *<b>value_out</b> to a new string holding the value portion
* of the line, and return a pointer to the start of the next line. If we run
* out of data, return a pointer to the end of the string. If we encounter an
* error, return NULL and set *<b>err_out</b> (if provided) to an error
* message.
*/
const char *
parse_config_line_from_str_verbose(const char *line, char **key_out,
char **value_out,
const char **err_out)
{
/*
See torrc_format.txt for a description of the (silly) format this parses.
*/
const char *key, *val, *cp;
int continuation = 0;
tor_assert(key_out);
tor_assert(value_out);
*key_out = *value_out = NULL;
key = val = NULL;
/* Skip until the first keyword. */
while (1) {
while (TOR_ISSPACE(*line))
++line;
if (*line == '#') {
while (*line && *line != '\n')
++line;
} else {
break;
}
}
if (!*line) { /* End of string? */
*key_out = *value_out = NULL;
return line;
}
/* Skip until the next space or \ followed by newline. */
key = line;
while (*line && !TOR_ISSPACE(*line) && *line != '#' &&
! (line[0] == '\\' && line[1] == '\n'))
++line;
*key_out = tor_strndup(key, line-key);
/* Skip until the value. */
while (*line == ' ' || *line == '\t')
++line;
val = line;
/* Find the end of the line. */
if (*line == '\"') { // XXX No continuation handling is done here
if (!(line = unescape_string(line, value_out, NULL))) {
if (err_out)
*err_out = "Invalid escape sequence in quoted string";
return NULL;
}
while (*line == ' ' || *line == '\t')
++line;
if (*line == '\r' && *(++line) == '\n')
++line;
if (*line && *line != '#' && *line != '\n') {
if (err_out)
*err_out = "Excess data after quoted string";
return NULL;
}
} else {
/* Look for the end of the line. */
while (*line && *line != '\n' && (*line != '#' || continuation)) {
if (*line == '\\' && line[1] == '\n') {
continuation = 1;
line += 2;
} else if (*line == '#') {
do {
++line;
} while (*line && *line != '\n');
if (*line == '\n')
++line;
} else {
++line;
}
}
if (*line == '\n') {
cp = line++;
} else {
cp = line;
}
/* Now back cp up to be the last nonspace character */
while (cp>val && TOR_ISSPACE(*(cp-1)))
--cp;
tor_assert(cp >= val);
/* Now copy out and decode the value. */
*value_out = tor_strndup(val, cp-val);
if (continuation) {
char *v_out, *v_in;
v_out = v_in = *value_out;
while (*v_in) {
if (*v_in == '#') {
do {
++v_in;
} while (*v_in && *v_in != '\n');
if (*v_in == '\n')
++v_in;
} else if (v_in[0] == '\\' && v_in[1] == '\n') {
v_in += 2;
} else {
*v_out++ = *v_in++;
}
}
*v_out = '\0';
}
}
if (*line == '#') {
do {
++line;
} while (*line && *line != '\n');
}
while (TOR_ISSPACE(*line)) ++line;
return line;
}
/** Expand any homedir prefix on <b>filename</b>; return a newly allocated
* string. */
char *
expand_filename(const char *filename)
{
tor_assert(filename);
#ifdef _WIN32
/* Might consider using GetFullPathName() as described here:
* http://etutorials.org/Programming/secure+programming/
* Chapter+3.+Input+Validation/3.7+Validating+Filenames+and+Paths/
*/
return tor_strdup(filename);
#else
if (*filename == '~') {
char *home, *result=NULL;
const char *rest;
if (filename[1] == '/' || filename[1] == '\0') {
home = getenv("HOME");
if (!home) {
log_warn(LD_CONFIG, "Couldn't find $HOME environment variable while "
"expanding \"%s\"; defaulting to \"\".", filename);
home = tor_strdup("");
} else {
home = tor_strdup(home);
}
rest = strlen(filename)>=2?(filename+2):"";
} else {
#ifdef HAVE_PWD_H
char *username, *slash;
slash = strchr(filename, '/');
if (slash)
username = tor_strndup(filename+1,slash-filename-1);
else
username = tor_strdup(filename+1);
if (!(home = get_user_homedir(username))) {
log_warn(LD_CONFIG,"Couldn't get homedir for \"%s\"",username);
tor_free(username);
return NULL;
}
tor_free(username);
rest = slash ? (slash+1) : "";
#else
log_warn(LD_CONFIG, "Couldn't expand homedir on system without pwd.h");
return tor_strdup(filename);
#endif
}
tor_assert(home);
/* Remove trailing slash. */
if (strlen(home)>1 && !strcmpend(home,PATH_SEPARATOR)) {
home[strlen(home)-1] = '\0';
}
tor_asprintf(&result,"%s"PATH_SEPARATOR"%s",home,rest);
tor_free(home);
return result;
} else {
return tor_strdup(filename);
}
#endif
}
#define MAX_SCANF_WIDTH 9999
/** Helper: given an ASCII-encoded decimal digit, return its numeric value.
* NOTE: requires that its input be in-bounds. */
static int
digit_to_num(char d)
{
int num = ((int)d) - (int)'0';
tor_assert(num <= 9 && num >= 0);
return num;
}
/** Helper: Read an unsigned int from *<b>bufp</b> of up to <b>width</b>
* characters. (Handle arbitrary width if <b>width</b> is less than 0.) On
* success, store the result in <b>out</b>, advance bufp to the next
* character, and return 0. On failure, return -1. */
static int
scan_unsigned(const char **bufp, unsigned long *out, int width, unsigned base)
{
unsigned long result = 0;
int scanned_so_far = 0;
const int hex = base==16;
tor_assert(base == 10 || base == 16);
if (!bufp || !*bufp || !out)
return -1;
if (width<0)
width=MAX_SCANF_WIDTH;
while (**bufp && (hex?TOR_ISXDIGIT(**bufp):TOR_ISDIGIT(**bufp))
&& scanned_so_far < width) {
unsigned digit = hex?hex_decode_digit(*(*bufp)++):digit_to_num(*(*bufp)++);
// Check for overflow beforehand, without actually causing any overflow
// This preserves functionality on compilers that don't wrap overflow
// (i.e. that trap or optimise away overflow)
// result * base + digit > ULONG_MAX
// result * base > ULONG_MAX - digit
if (result > (ULONG_MAX - digit)/base)
return -1; /* Processing this digit would overflow */
result = result * base + digit;
++scanned_so_far;
}
if (!scanned_so_far) /* No actual digits scanned */
return -1;
*out = result;
return 0;
}
/** Helper: Read an signed int from *<b>bufp</b> of up to <b>width</b>
* characters. (Handle arbitrary width if <b>width</b> is less than 0.) On
* success, store the result in <b>out</b>, advance bufp to the next
* character, and return 0. On failure, return -1. */
static int
scan_signed(const char **bufp, long *out, int width)
{
int neg = 0;
unsigned long result = 0;
if (!bufp || !*bufp || !out)
return -1;
if (width<0)
width=MAX_SCANF_WIDTH;
if (**bufp == '-') {
neg = 1;
++*bufp;
--width;
}
if (scan_unsigned(bufp, &result, width, 10) < 0)
return -1;
if (neg && result > 0) {
if (result > ((unsigned long)LONG_MAX) + 1)
return -1; /* Underflow */
else if (result == ((unsigned long)LONG_MAX) + 1)
*out = LONG_MIN;
else {
/* We once had a far more clever no-overflow conversion here, but
* some versions of GCC apparently ran it into the ground. Now
* we just check for LONG_MIN explicitly.
*/
*out = -(long)result;
}
} else {
if (result > LONG_MAX)
return -1; /* Overflow */
*out = (long)result;
}
return 0;
}
/** Helper: Read a decimal-formatted double from *<b>bufp</b> of up to
* <b>width</b> characters. (Handle arbitrary width if <b>width</b> is less
* than 0.) On success, store the result in <b>out</b>, advance bufp to the
* next character, and return 0. On failure, return -1. */
static int
scan_double(const char **bufp, double *out, int width)
{
int neg = 0;
double result = 0;
int scanned_so_far = 0;
if (!bufp || !*bufp || !out)
return -1;
if (width<0)
width=MAX_SCANF_WIDTH;
if (**bufp == '-') {
neg = 1;
++*bufp;
}
while (**bufp && TOR_ISDIGIT(**bufp) && scanned_so_far < width) {
const int digit = digit_to_num(*(*bufp)++);
result = result * 10 + digit;
++scanned_so_far;
}
if (**bufp == '.') {
double fracval = 0, denominator = 1;
++*bufp;
++scanned_so_far;
while (**bufp && TOR_ISDIGIT(**bufp) && scanned_so_far < width) {
const int digit = digit_to_num(*(*bufp)++);
fracval = fracval * 10 + digit;
denominator *= 10;
++scanned_so_far;
}
result += fracval / denominator;
}
if (!scanned_so_far) /* No actual digits scanned */
return -1;
*out = neg ? -result : result;
return 0;
}
/** Helper: copy up to <b>width</b> non-space characters from <b>bufp</b> to
* <b>out</b>. Make sure <b>out</b> is nul-terminated. Advance <b>bufp</b>
* to the next non-space character or the EOS. */
static int
scan_string(const char **bufp, char *out, int width)
{
int scanned_so_far = 0;
if (!bufp || !out || width < 0)
return -1;
while (**bufp && ! TOR_ISSPACE(**bufp) && scanned_so_far < width) {
*out++ = *(*bufp)++;
++scanned_so_far;
}
*out = '\0';
return 0;
}
/** Locale-independent, minimal, no-surprises scanf variant, accepting only a
* restricted pattern format. For more info on what it supports, see
* tor_sscanf() documentation. */
int
tor_vsscanf(const char *buf, const char *pattern, va_list ap)
{
int n_matched = 0;
while (*pattern) {
if (*pattern != '%') {
if (*buf == *pattern) {
++buf;
++pattern;
continue;
} else {
return n_matched;
}
} else {
int width = -1;
int longmod = 0;
++pattern;
if (TOR_ISDIGIT(*pattern)) {
width = digit_to_num(*pattern++);
while (TOR_ISDIGIT(*pattern)) {
width *= 10;
width += digit_to_num(*pattern++);
if (width > MAX_SCANF_WIDTH)
return -1;
}
if (!width) /* No zero-width things. */
return -1;
}
if (*pattern == 'l') {
longmod = 1;
++pattern;
}
if (*pattern == 'u' || *pattern == 'x') {
unsigned long u;
const int base = (*pattern == 'u') ? 10 : 16;
if (!*buf)
return n_matched;
if (scan_unsigned(&buf, &u, width, base)<0)
return n_matched;
if (longmod) {
unsigned long *out = va_arg(ap, unsigned long *);
*out = u;
} else {
unsigned *out = va_arg(ap, unsigned *);
if (u > UINT_MAX)
return n_matched;
*out = (unsigned) u;
}
++pattern;
++n_matched;
} else if (*pattern == 'f') {
double *d = va_arg(ap, double *);
if (!longmod)
return -1; /* float not supported */
if (!*buf)
return n_matched;
if (scan_double(&buf, d, width)<0)
return n_matched;
++pattern;
++n_matched;
} else if (*pattern == 'd') {
long lng=0;
if (scan_signed(&buf, &lng, width)<0)
return n_matched;
if (longmod) {
long *out = va_arg(ap, long *);
*out = lng;
} else {
int *out = va_arg(ap, int *);
#if LONG_MAX > INT_MAX
if (lng < INT_MIN || lng > INT_MAX)
return n_matched;
#endif
*out = (int)lng;
}
++pattern;
++n_matched;
} else if (*pattern == 's') {
char *s = va_arg(ap, char *);
if (longmod)
return -1;
if (width < 0)
return -1;
if (scan_string(&buf, s, width)<0)
return n_matched;
++pattern;
++n_matched;
} else if (*pattern == 'c') {
char *ch = va_arg(ap, char *);
if (longmod)
return -1;
if (width != -1)
return -1;
if (!*buf)
return n_matched;
*ch = *buf++;
++pattern;
++n_matched;
} else if (*pattern == '%') {
if (*buf != '%')
return n_matched;
if (longmod)
return -1;
++buf;
++pattern;
} else {
return -1; /* Unrecognized pattern component. */
}
}
}
return n_matched;
}
/** Minimal sscanf replacement: parse <b>buf</b> according to <b>pattern</b>
* and store the results in the corresponding argument fields. Differs from
* sscanf in that:
* <ul><li>It only handles %u, %lu, %x, %lx, %[NUM]s, %d, %ld, %lf, and %c.
* <li>It only handles decimal inputs for %lf. (12.3, not 1.23e1)
* <li>It does not handle arbitrarily long widths.
* <li>Numbers do not consume any space characters.
* <li>It is locale-independent.
* <li>%u and %x do not consume any space.
* <li>It returns -1 on malformed patterns.</ul>
*
* (As with other locale-independent functions, we need this to parse data that
* is in ASCII without worrying that the C library's locale-handling will make
* miscellaneous characters look like numbers, spaces, and so on.)
*/
int
tor_sscanf(const char *buf, const char *pattern, ...)
{
int r;
va_list ap;
va_start(ap, pattern);
r = tor_vsscanf(buf, pattern, ap);
va_end(ap);
return r;
}
/** Append the string produced by tor_asprintf(<b>pattern</b>, <b>...</b>)
* to <b>sl</b>. */
void
smartlist_add_asprintf(struct smartlist_t *sl, const char *pattern, ...)
{
va_list ap;
va_start(ap, pattern);
smartlist_add_vasprintf(sl, pattern, ap);
va_end(ap);
}
/** va_list-based backend of smartlist_add_asprintf. */
void
smartlist_add_vasprintf(struct smartlist_t *sl, const char *pattern,
va_list args)
{
char *str = NULL;
tor_vasprintf(&str, pattern, args);
tor_assert(str != NULL);
smartlist_add(sl, str);
}
/** Return a new list containing the filenames in the directory <b>dirname</b>.
* Return NULL on error or if <b>dirname</b> is not a directory.
*/
MOCK_IMPL(smartlist_t *,
tor_listdir, (const char *dirname))
{
smartlist_t *result;
#ifdef _WIN32
char *pattern=NULL;
TCHAR tpattern[MAX_PATH] = {0};
char name[MAX_PATH*2+1] = {0};
HANDLE handle;
WIN32_FIND_DATA findData;
tor_asprintf(&pattern, "%s\\*", dirname);
#ifdef UNICODE
mbstowcs(tpattern,pattern,MAX_PATH);
#else
strlcpy(tpattern, pattern, MAX_PATH);
#endif
if (INVALID_HANDLE_VALUE == (handle = FindFirstFile(tpattern, &findData))) {
tor_free(pattern);
return NULL;
}
result = smartlist_new();
while (1) {
#ifdef UNICODE
wcstombs(name,findData.cFileName,MAX_PATH);
name[sizeof(name)-1] = '\0';
#else
strlcpy(name,findData.cFileName,sizeof(name));
#endif
if (strcmp(name, ".") &&
strcmp(name, "..")) {
smartlist_add(result, tor_strdup(name));
}
if (!FindNextFile(handle, &findData)) {
DWORD err;
if ((err = GetLastError()) != ERROR_NO_MORE_FILES) {
char *errstr = format_win32_error(err);
log_warn(LD_FS, "Error reading directory '%s': %s", dirname, errstr);
tor_free(errstr);
}
break;
}
}
FindClose(handle);
tor_free(pattern);
#else
const char *prot_dname = sandbox_intern_string(dirname);
DIR *d;
struct dirent *de;
if (!(d = opendir(prot_dname)))
return NULL;
result = smartlist_new();
while ((de = readdir(d))) {
if (!strcmp(de->d_name, ".") ||
!strcmp(de->d_name, ".."))
continue;
smartlist_add(result, tor_strdup(de->d_name));
}
closedir(d);
#endif
return result;
}
/** Return true iff <b>filename</b> is a relative path. */
int
path_is_relative(const char *filename)
{
if (filename && filename[0] == '/')
return 0;
#ifdef _WIN32
else if (filename && filename[0] == '\\')
return 0;
else if (filename && strlen(filename)>3 && TOR_ISALPHA(filename[0]) &&
filename[1] == ':' && filename[2] == '\\')
return 0;
#endif
else
return 1;
}
/* =====
* Process helpers
* ===== */
#ifndef _WIN32
/* Based on code contributed by christian grothoff */
/** True iff we've called start_daemon(). */
static int start_daemon_called = 0;
/** True iff we've called finish_daemon(). */
static int finish_daemon_called = 0;
/** Socketpair used to communicate between parent and child process while
* daemonizing. */
static int daemon_filedes[2];
/** Start putting the process into daemon mode: fork and drop all resources
* except standard fds. The parent process never returns, but stays around
* until finish_daemon is called. (Note: it's safe to call this more
* than once: calls after the first are ignored.)
*/
void
start_daemon(void)
{
pid_t pid;
if (start_daemon_called)
return;
start_daemon_called = 1;
if (pipe(daemon_filedes)) {
/* LCOV_EXCL_START */
log_err(LD_GENERAL,"pipe failed; exiting. Error was %s", strerror(errno));
exit(1);
/* LCOV_EXCL_STOP */
}
pid = fork();
if (pid < 0) {
/* LCOV_EXCL_START */
log_err(LD_GENERAL,"fork failed. Exiting.");
exit(1);
/* LCOV_EXCL_STOP */
}
if (pid) { /* Parent */
int ok;
char c;
close(daemon_filedes[1]); /* we only read */
ok = -1;
while (0 < read(daemon_filedes[0], &c, sizeof(char))) {
if (c == '.')
ok = 1;
}
fflush(stdout);
if (ok == 1)
exit(0);
else
exit(1); /* child reported error */
} else { /* Child */
close(daemon_filedes[0]); /* we only write */
pid = setsid(); /* Detach from controlling terminal */
/*
* Fork one more time, so the parent (the session group leader) can exit.
* This means that we, as a non-session group leader, can never regain a
* controlling terminal. This part is recommended by Stevens's
* _Advanced Programming in the Unix Environment_.
*/
if (fork() != 0) {
exit(0);
}
set_main_thread(); /* We are now the main thread. */
return;
}
}
/** Finish putting the process into daemon mode: drop standard fds, and tell
* the parent process to exit. (Note: it's safe to call this more than once:
* calls after the first are ignored. Calls start_daemon first if it hasn't
* been called already.)
*/
void
finish_daemon(const char *desired_cwd)
{
int nullfd;
char c = '.';
if (finish_daemon_called)
return;
if (!start_daemon_called)
start_daemon();
finish_daemon_called = 1;
if (!desired_cwd)
desired_cwd = "/";
/* Don't hold the wrong FS mounted */
if (chdir(desired_cwd) < 0) {
log_err(LD_GENERAL,"chdir to \"%s\" failed. Exiting.",desired_cwd);
exit(1);
}
nullfd = tor_open_cloexec("/dev/null", O_RDWR, 0);
if (nullfd < 0) {
/* LCOV_EXCL_START */
log_err(LD_GENERAL,"/dev/null can't be opened. Exiting.");
exit(1);
/* LCOV_EXCL_STOP */
}
/* close fds linking to invoking terminal, but
* close usual incoming fds, but redirect them somewhere
* useful so the fds don't get reallocated elsewhere.
*/
if (dup2(nullfd,0) < 0 ||
dup2(nullfd,1) < 0 ||
dup2(nullfd,2) < 0) {
/* LCOV_EXCL_START */
log_err(LD_GENERAL,"dup2 failed. Exiting.");
exit(1);
/* LCOV_EXCL_STOP */
}
if (nullfd > 2)
close(nullfd);
/* signal success */
if (write(daemon_filedes[1], &c, sizeof(char)) != sizeof(char)) {
log_err(LD_GENERAL,"write failed. Exiting.");
}
close(daemon_filedes[1]);
}
#else
/* defined(_WIN32) */
void
start_daemon(void)
{
}
void
finish_daemon(const char *cp)
{
(void)cp;
}
#endif
/** Write the current process ID, followed by NL, into <b>filename</b>.
*/
void
write_pidfile(const char *filename)
{
FILE *pidfile;
if ((pidfile = fopen(filename, "w")) == NULL) {
log_warn(LD_FS, "Unable to open \"%s\" for writing: %s", filename,
strerror(errno));
} else {
#ifdef _WIN32
fprintf(pidfile, "%d\n", (int)_getpid());
#else
fprintf(pidfile, "%d\n", (int)getpid());
#endif
fclose(pidfile);
}
}
#ifdef _WIN32
HANDLE
load_windows_system_library(const TCHAR *library_name)
{
TCHAR path[MAX_PATH];
unsigned n;
n = GetSystemDirectory(path, MAX_PATH);
if (n == 0 || n + _tcslen(library_name) + 2 >= MAX_PATH)
return 0;
_tcscat(path, TEXT("\\"));
_tcscat(path, library_name);
return LoadLibrary(path);
}
#endif
/** Format a single argument for being put on a Windows command line.
* Returns a newly allocated string */
static char *
format_win_cmdline_argument(const char *arg)
{
char *formatted_arg;
char need_quotes;
const char *c;
int i;
int bs_counter = 0;
/* Backslash we can point to when one is inserted into the string */
const char backslash = '\\';
/* Smartlist of *char */
smartlist_t *arg_chars;
arg_chars = smartlist_new();
/* Quote string if it contains whitespace or is empty */
need_quotes = (strchr(arg, ' ') || strchr(arg, '\t') || '\0' == arg[0]);
/* Build up smartlist of *chars */
for (c=arg; *c != '\0'; c++) {
if ('"' == *c) {
/* Double up backslashes preceding a quote */
for (i=0; i<(bs_counter*2); i++)
smartlist_add(arg_chars, (void*)&backslash);
bs_counter = 0;
/* Escape the quote */
smartlist_add(arg_chars, (void*)&backslash);
smartlist_add(arg_chars, (void*)c);
} else if ('\\' == *c) {
/* Count backslashes until we know whether to double up */
bs_counter++;
} else {
/* Don't double up slashes preceding a non-quote */
for (i=0; i<bs_counter; i++)
smartlist_add(arg_chars, (void*)&backslash);
bs_counter = 0;
smartlist_add(arg_chars, (void*)c);
}
}
/* Don't double up trailing backslashes */
for (i=0; i<bs_counter; i++)
smartlist_add(arg_chars, (void*)&backslash);
/* Allocate space for argument, quotes (if needed), and terminator */
const size_t formatted_arg_len = smartlist_len(arg_chars) +
(need_quotes ? 2 : 0) + 1;
formatted_arg = tor_malloc_zero(formatted_arg_len);
/* Add leading quote */
i=0;
if (need_quotes)
formatted_arg[i++] = '"';
/* Add characters */
SMARTLIST_FOREACH(arg_chars, char*, ch,
{
formatted_arg[i++] = *ch;
});
/* Add trailing quote */
if (need_quotes)
formatted_arg[i++] = '"';
formatted_arg[i] = '\0';
smartlist_free(arg_chars);
return formatted_arg;
}
/** Format a command line for use on Windows, which takes the command as a
* string rather than string array. Follows the rules from "Parsing C++
* Command-Line Arguments" in MSDN. Algorithm based on list2cmdline in the
* Python subprocess module. Returns a newly allocated string */
char *
tor_join_win_cmdline(const char *argv[])
{
smartlist_t *argv_list;
char *joined_argv;
int i;
/* Format each argument and put the result in a smartlist */
argv_list = smartlist_new();
for (i=0; argv[i] != NULL; i++) {
smartlist_add(argv_list, (void *)format_win_cmdline_argument(argv[i]));
}
/* Join the arguments with whitespace */
joined_argv = smartlist_join_strings(argv_list, " ", 0, NULL);
/* Free the newly allocated arguments, and the smartlist */
SMARTLIST_FOREACH(argv_list, char *, arg,
{
tor_free(arg);
});
smartlist_free(argv_list);
return joined_argv;
}
/* As format_{hex,dex}_number_sigsafe, but takes a <b>radix</b> argument
* in range 2..16 inclusive. */
static int
format_number_sigsafe(unsigned long x, char *buf, int buf_len,
unsigned int radix)
{
unsigned long tmp;
int len;
char *cp;
/* NOT tor_assert. This needs to be safe to run from within a signal handler,
* and from within the 'tor_assert() has failed' code. */
if (radix < 2 || radix > 16)
return 0;
/* Count how many digits we need. */
tmp = x;
len = 1;
while (tmp >= radix) {
tmp /= radix;
++len;
}
/* Not long enough */
if (!buf || len >= buf_len)
return 0;
cp = buf + len;
*cp = '\0';
do {
unsigned digit = (unsigned) (x % radix);
tor_assert(cp > buf);
--cp;
*cp = "0123456789ABCDEF"[digit];
x /= radix;
} while (x);
/* NOT tor_assert; see above. */
if (cp != buf) {
abort(); // LCOV_EXCL_LINE
}
return len;
}
/**
* Helper function to output hex numbers from within a signal handler.
*
* Writes the nul-terminated hexadecimal digits of <b>x</b> into a buffer
* <b>buf</b> of size <b>buf_len</b>, and return the actual number of digits
* written, not counting the terminal NUL.
*
* If there is insufficient space, write nothing and return 0.
*
* This accepts an unsigned int because format_helper_exit_status() needs to
* call it with a signed int and an unsigned char, and since the C standard
* does not guarantee that an int is wider than a char (an int must be at
* least 16 bits but it is permitted for a char to be that wide as well), we
* can't assume a signed int is sufficient to accomodate an unsigned char.
* Thus, format_helper_exit_status() will still need to emit any require '-'
* on its own.
*
* For most purposes, you'd want to use tor_snprintf("%x") instead of this
* function; it's designed to be used in code paths where you can't call
* arbitrary C functions.
*/
int
format_hex_number_sigsafe(unsigned long x, char *buf, int buf_len)
{
return format_number_sigsafe(x, buf, buf_len, 16);
}
/** As format_hex_number_sigsafe, but format the number in base 10. */
int
format_dec_number_sigsafe(unsigned long x, char *buf, int buf_len)
{
return format_number_sigsafe(x, buf, buf_len, 10);
}
#ifndef _WIN32
/** Format <b>child_state</b> and <b>saved_errno</b> as a hex string placed in
* <b>hex_errno</b>. Called between fork and _exit, so must be signal-handler
* safe.
*
* <b>hex_errno</b> must have at least HEX_ERRNO_SIZE+1 bytes available.
*
* The format of <b>hex_errno</b> is: "CHILD_STATE/ERRNO\n", left-padded
* with spaces. CHILD_STATE indicates where
* in the processs of starting the child process did the failure occur (see
* CHILD_STATE_* macros for definition), and SAVED_ERRNO is the value of
* errno when the failure occurred.
*
* On success return the number of characters added to hex_errno, not counting
* the terminating NUL; return -1 on error.
*/
STATIC int
format_helper_exit_status(unsigned char child_state, int saved_errno,
char *hex_errno)
{
unsigned int unsigned_errno;
int written, left;
char *cur;
size_t i;
int res = -1;
/* Fill hex_errno with spaces, and a trailing newline (memset may
not be signal handler safe, so we can't use it) */
for (i = 0; i < (HEX_ERRNO_SIZE - 1); i++)
hex_errno[i] = ' ';
hex_errno[HEX_ERRNO_SIZE - 1] = '\n';
/* Convert errno to be unsigned for hex conversion */
if (saved_errno < 0) {
// Avoid overflow on the cast to unsigned int when result is INT_MIN
// by adding 1 to the signed int negative value,
// then, after it has been negated and cast to unsigned,
// adding the original 1 back (the double-addition is intentional).
// Otherwise, the cast to signed could cause a temporary int
// to equal INT_MAX + 1, which is undefined.
unsigned_errno = ((unsigned int) -(saved_errno + 1)) + 1;
} else {
unsigned_errno = (unsigned int) saved_errno;
}
/*
* Count how many chars of space we have left, and keep a pointer into the
* current point in the buffer.
*/
left = HEX_ERRNO_SIZE+1;
cur = hex_errno;
/* Emit child_state */
written = format_hex_number_sigsafe(child_state, cur, left);
if (written <= 0)
goto err;
/* Adjust left and cur */
left -= written;
cur += written;
if (left <= 0)
goto err;
/* Now the '/' */
*cur = '/';
/* Adjust left and cur */
++cur;
--left;
if (left <= 0)
goto err;
/* Need minus? */
if (saved_errno < 0) {
*cur = '-';
++cur;
--left;
if (left <= 0)
goto err;
}
/* Emit unsigned_errno */
written = format_hex_number_sigsafe(unsigned_errno, cur, left);
if (written <= 0)
goto err;
/* Adjust left and cur */
left -= written;
cur += written;
/* Check that we have enough space left for a newline and a NUL */
if (left <= 1)
goto err;
/* Emit the newline and NUL */
*cur++ = '\n';
*cur++ = '\0';
res = (int)(cur - hex_errno - 1);
goto done;
err:
/*
* In error exit, just write a '\0' in the first char so whatever called
* this at least won't fall off the end.
*/
*hex_errno = '\0';
done:
return res;
}
#endif
/* Maximum number of file descriptors, if we cannot get it via sysconf() */
#define DEFAULT_MAX_FD 256
/** Terminate the process of <b>process_handle</b>, if that process has not
* already exited.
*
* Return 0 if we succeeded in terminating the process (or if the process
* already exited), and -1 if we tried to kill the process but failed.
*
* Based on code originally borrowed from Python's os.kill. */
int
tor_terminate_process(process_handle_t *process_handle)
{
#ifdef _WIN32
if (tor_get_exit_code(process_handle, 0, NULL) == PROCESS_EXIT_RUNNING) {
HANDLE handle = process_handle->pid.hProcess;
if (!TerminateProcess(handle, 0))
return -1;
else
return 0;
}
#else /* Unix */
if (process_handle->waitpid_cb) {
/* We haven't got a waitpid yet, so we can just kill off the process. */
return kill(process_handle->pid, SIGTERM);
}
#endif
return 0; /* We didn't need to kill the process, so report success */
}
/** Return the Process ID of <b>process_handle</b>. */
int
tor_process_get_pid(process_handle_t *process_handle)
{
#ifdef _WIN32
return (int) process_handle->pid.dwProcessId;
#else
return (int) process_handle->pid;
#endif
}
#ifdef _WIN32
HANDLE
tor_process_get_stdout_pipe(process_handle_t *process_handle)
{
return process_handle->stdout_pipe;
}
#else
/* DOCDOC tor_process_get_stdout_pipe */
FILE *
tor_process_get_stdout_pipe(process_handle_t *process_handle)
{
return process_handle->stdout_handle;
}
#endif
/* DOCDOC process_handle_new */
static process_handle_t *
process_handle_new(void)
{
process_handle_t *out = tor_malloc_zero(sizeof(process_handle_t));
#ifdef _WIN32
out->stdin_pipe = INVALID_HANDLE_VALUE;
out->stdout_pipe = INVALID_HANDLE_VALUE;
out->stderr_pipe = INVALID_HANDLE_VALUE;
#else
out->stdin_pipe = -1;
out->stdout_pipe = -1;
out->stderr_pipe = -1;
#endif
return out;
}
#ifndef _WIN32
/** Invoked when a process that we've launched via tor_spawn_background() has
* been found to have terminated.
*/
static void
process_handle_waitpid_cb(int status, void *arg)
{
process_handle_t *process_handle = arg;
process_handle->waitpid_exit_status = status;
clear_waitpid_callback(process_handle->waitpid_cb);
if (process_handle->status == PROCESS_STATUS_RUNNING)
process_handle->status = PROCESS_STATUS_NOTRUNNING;
process_handle->waitpid_cb = 0;
}
#endif
/**
* @name child-process states
*
* Each of these values represents a possible state that a child process can
* be in. They're used to determine what to say when telling the parent how
* far along we were before failure.
*
* @{
*/
#define CHILD_STATE_INIT 0
#define CHILD_STATE_PIPE 1
#define CHILD_STATE_MAXFD 2
#define CHILD_STATE_FORK 3
#define CHILD_STATE_DUPOUT 4
#define CHILD_STATE_DUPERR 5
#define CHILD_STATE_DUPIN 6
#define CHILD_STATE_CLOSEFD 7
#define CHILD_STATE_EXEC 8
#define CHILD_STATE_FAILEXEC 9
/** @} */
/** Start a program in the background. If <b>filename</b> contains a '/', then
* it will be treated as an absolute or relative path. Otherwise, on
* non-Windows systems, the system path will be searched for <b>filename</b>.
* On Windows, only the current directory will be searched. Here, to search the
* system path (as well as the application directory, current working
* directory, and system directories), set filename to NULL.
*
* The strings in <b>argv</b> will be passed as the command line arguments of
* the child program (following convention, argv[0] should normally be the
* filename of the executable, and this must be the case if <b>filename</b> is
* NULL). The last element of argv must be NULL. A handle to the child process
* will be returned in process_handle (which must be non-NULL). Read
* process_handle.status to find out if the process was successfully launched.
* For convenience, process_handle.status is returned by this function.
*
* Some parts of this code are based on the POSIX subprocess module from
* Python, and example code from
* http://msdn.microsoft.com/en-us/library/ms682499%28v=vs.85%29.aspx.
*/
int
tor_spawn_background(const char *const filename, const char **argv,
process_environment_t *env,
process_handle_t **process_handle_out)
{
#ifdef _WIN32
HANDLE stdout_pipe_read = NULL;
HANDLE stdout_pipe_write = NULL;
HANDLE stderr_pipe_read = NULL;
HANDLE stderr_pipe_write = NULL;
HANDLE stdin_pipe_read = NULL;
HANDLE stdin_pipe_write = NULL;
process_handle_t *process_handle;
int status;
STARTUPINFOA siStartInfo;
BOOL retval = FALSE;
SECURITY_ATTRIBUTES saAttr;
char *joined_argv;
saAttr.nLength = sizeof(SECURITY_ATTRIBUTES);
saAttr.bInheritHandle = TRUE;
/* TODO: should we set explicit security attributes? (#2046, comment 5) */
saAttr.lpSecurityDescriptor = NULL;
/* Assume failure to start process */
status = PROCESS_STATUS_ERROR;
/* Set up pipe for stdout */
if (!CreatePipe(&stdout_pipe_read, &stdout_pipe_write, &saAttr, 0)) {
log_warn(LD_GENERAL,
"Failed to create pipe for stdout communication with child process: %s",
format_win32_error(GetLastError()));
return status;
}
if (!SetHandleInformation(stdout_pipe_read, HANDLE_FLAG_INHERIT, 0)) {
log_warn(LD_GENERAL,
"Failed to configure pipe for stdout communication with child "
"process: %s", format_win32_error(GetLastError()));
return status;
}
/* Set up pipe for stderr */
if (!CreatePipe(&stderr_pipe_read, &stderr_pipe_write, &saAttr, 0)) {
log_warn(LD_GENERAL,
"Failed to create pipe for stderr communication with child process: %s",
format_win32_error(GetLastError()));
return status;
}
if (!SetHandleInformation(stderr_pipe_read, HANDLE_FLAG_INHERIT, 0)) {
log_warn(LD_GENERAL,
"Failed to configure pipe for stderr communication with child "
"process: %s", format_win32_error(GetLastError()));
return status;
}
/* Set up pipe for stdin */
if (!CreatePipe(&stdin_pipe_read, &stdin_pipe_write, &saAttr, 0)) {
log_warn(LD_GENERAL,
"Failed to create pipe for stdin communication with child process: %s",
format_win32_error(GetLastError()));
return status;
}
if (!SetHandleInformation(stdin_pipe_write, HANDLE_FLAG_INHERIT, 0)) {
log_warn(LD_GENERAL,
"Failed to configure pipe for stdin communication with child "
"process: %s", format_win32_error(GetLastError()));
return status;
}
/* Create the child process */
/* Windows expects argv to be a whitespace delimited string, so join argv up
*/
joined_argv = tor_join_win_cmdline(argv);
process_handle = process_handle_new();
process_handle->status = status;
ZeroMemory(&(process_handle->pid), sizeof(PROCESS_INFORMATION));
ZeroMemory(&siStartInfo, sizeof(STARTUPINFO));
siStartInfo.cb = sizeof(STARTUPINFO);
siStartInfo.hStdError = stderr_pipe_write;
siStartInfo.hStdOutput = stdout_pipe_write;
siStartInfo.hStdInput = stdin_pipe_read;
siStartInfo.dwFlags |= STARTF_USESTDHANDLES;
/* Create the child process */
retval = CreateProcessA(filename, // module name
joined_argv, // command line
/* TODO: should we set explicit security attributes? (#2046, comment 5) */
NULL, // process security attributes
NULL, // primary thread security attributes
TRUE, // handles are inherited
/*(TODO: set CREATE_NEW CONSOLE/PROCESS_GROUP to make GetExitCodeProcess()
* work?) */
CREATE_NO_WINDOW, // creation flags
(env==NULL) ? NULL : env->windows_environment_block,
NULL, // use parent's current directory
&siStartInfo, // STARTUPINFO pointer
&(process_handle->pid)); // receives PROCESS_INFORMATION
tor_free(joined_argv);
if (!retval) {
log_warn(LD_GENERAL,
"Failed to create child process %s: %s", filename?filename:argv[0],
format_win32_error(GetLastError()));
tor_free(process_handle);
} else {
/* TODO: Close hProcess and hThread in process_handle->pid? */
process_handle->stdout_pipe = stdout_pipe_read;
process_handle->stderr_pipe = stderr_pipe_read;
process_handle->stdin_pipe = stdin_pipe_write;
status = process_handle->status = PROCESS_STATUS_RUNNING;
}
/* TODO: Close pipes on exit */
*process_handle_out = process_handle;
return status;
#else // _WIN32
pid_t pid;
int stdout_pipe[2];
int stderr_pipe[2];
int stdin_pipe[2];
int fd, retval;
ssize_t nbytes;
process_handle_t *process_handle;
int status;
const char *error_message = SPAWN_ERROR_MESSAGE;
size_t error_message_length;
/* Represents where in the process of spawning the program is;
this is used for printing out the error message */
unsigned char child_state = CHILD_STATE_INIT;
char hex_errno[HEX_ERRNO_SIZE + 2]; /* + 1 should be sufficient actually */
static int max_fd = -1;
status = PROCESS_STATUS_ERROR;
/* We do the strlen here because strlen() is not signal handler safe,
and we are not allowed to use unsafe functions between fork and exec */
error_message_length = strlen(error_message);
child_state = CHILD_STATE_PIPE;
/* Set up pipe for redirecting stdout, stderr, and stdin of child */
retval = pipe(stdout_pipe);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to set up pipe for stdout communication with child process: %s",
strerror(errno));
return status;
}
retval = pipe(stderr_pipe);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to set up pipe for stderr communication with child process: %s",
strerror(errno));
close(stdout_pipe[0]);
close(stdout_pipe[1]);
return status;
}
retval = pipe(stdin_pipe);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to set up pipe for stdin communication with child process: %s",
strerror(errno));
close(stdout_pipe[0]);
close(stdout_pipe[1]);
close(stderr_pipe[0]);
close(stderr_pipe[1]);
return status;
}
child_state = CHILD_STATE_MAXFD;
#ifdef _SC_OPEN_MAX
if (-1 == max_fd) {
max_fd = (int) sysconf(_SC_OPEN_MAX);
if (max_fd == -1) {
max_fd = DEFAULT_MAX_FD;
log_warn(LD_GENERAL,
"Cannot find maximum file descriptor, assuming %d", max_fd);
}
}
#else
max_fd = DEFAULT_MAX_FD;
#endif
child_state = CHILD_STATE_FORK;
pid = fork();
if (0 == pid) {
/* In child */
#if defined(HAVE_SYS_PRCTL_H) && defined(__linux__)
/* Attempt to have the kernel issue a SIGTERM if the parent
* goes away. Certain attributes of the binary being execve()ed
* will clear this during the execve() call, but it's better
* than nothing.
*/
prctl(PR_SET_PDEATHSIG, SIGTERM);
#endif
child_state = CHILD_STATE_DUPOUT;
/* Link child stdout to the write end of the pipe */
retval = dup2(stdout_pipe[1], STDOUT_FILENO);
if (-1 == retval)
goto error;
child_state = CHILD_STATE_DUPERR;
/* Link child stderr to the write end of the pipe */
retval = dup2(stderr_pipe[1], STDERR_FILENO);
if (-1 == retval)
goto error;
child_state = CHILD_STATE_DUPIN;
/* Link child stdin to the read end of the pipe */
retval = dup2(stdin_pipe[0], STDIN_FILENO);
if (-1 == retval)
goto error;
child_state = CHILD_STATE_CLOSEFD;
close(stderr_pipe[0]);
close(stderr_pipe[1]);
close(stdout_pipe[0]);
close(stdout_pipe[1]);
close(stdin_pipe[0]);
close(stdin_pipe[1]);
/* Close all other fds, including the read end of the pipe */
/* XXX: We should now be doing enough FD_CLOEXEC setting to make
* this needless. */
for (fd = STDERR_FILENO + 1; fd < max_fd; fd++) {
close(fd);
}
child_state = CHILD_STATE_EXEC;
/* Call the requested program. We need the cast because
execvp doesn't define argv as const, even though it
does not modify the arguments */
if (env)
execve(filename, (char *const *) argv, env->unixoid_environment_block);
else {
static char *new_env[] = { NULL };
execve(filename, (char *const *) argv, new_env);
}
/* If we got here, the exec or open(/dev/null) failed */
child_state = CHILD_STATE_FAILEXEC;
error:
{
/* XXX: are we leaking fds from the pipe? */
int n;
n = format_helper_exit_status(child_state, errno, hex_errno);
if (n >= 0) {
/* Write the error message. GCC requires that we check the return
value, but there is nothing we can do if it fails */
/* TODO: Don't use STDOUT, use a pipe set up just for this purpose */
nbytes = write(STDOUT_FILENO, error_message, error_message_length);
nbytes = write(STDOUT_FILENO, hex_errno, n);
}
}
(void) nbytes;
_exit(255);
/* Never reached, but avoids compiler warning */
return status; // LCOV_EXCL_LINE
}
/* In parent */
if (-1 == pid) {
log_warn(LD_GENERAL, "Failed to fork child process: %s", strerror(errno));
close(stdin_pipe[0]);
close(stdin_pipe[1]);
close(stdout_pipe[0]);
close(stdout_pipe[1]);
close(stderr_pipe[0]);
close(stderr_pipe[1]);
return status;
}
process_handle = process_handle_new();
process_handle->status = status;
process_handle->pid = pid;
/* TODO: If the child process forked but failed to exec, waitpid it */
/* Return read end of the pipes to caller, and close write end */
process_handle->stdout_pipe = stdout_pipe[0];
retval = close(stdout_pipe[1]);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to close write end of stdout pipe in parent process: %s",
strerror(errno));
}
process_handle->waitpid_cb = set_waitpid_callback(pid,
process_handle_waitpid_cb,
process_handle);
process_handle->stderr_pipe = stderr_pipe[0];
retval = close(stderr_pipe[1]);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to close write end of stderr pipe in parent process: %s",
strerror(errno));
}
/* Return write end of the stdin pipe to caller, and close the read end */
process_handle->stdin_pipe = stdin_pipe[1];
retval = close(stdin_pipe[0]);
if (-1 == retval) {
log_warn(LD_GENERAL,
"Failed to close read end of stdin pipe in parent process: %s",
strerror(errno));
}
status = process_handle->status = PROCESS_STATUS_RUNNING;
/* Set stdin/stdout/stderr pipes to be non-blocking */
if (fcntl(process_handle->stdout_pipe, F_SETFL, O_NONBLOCK) < 0 ||
fcntl(process_handle->stderr_pipe, F_SETFL, O_NONBLOCK) < 0 ||
fcntl(process_handle->stdin_pipe, F_SETFL, O_NONBLOCK) < 0) {
log_warn(LD_GENERAL, "Failed to set stderror/stdout/stdin pipes "
"nonblocking in parent process: %s", strerror(errno));
}
/* Open the buffered IO streams */
process_handle->stdout_handle = fdopen(process_handle->stdout_pipe, "r");
process_handle->stderr_handle = fdopen(process_handle->stderr_pipe, "r");
process_handle->stdin_handle = fdopen(process_handle->stdin_pipe, "r");
*process_handle_out = process_handle;
return process_handle->status;
#endif // _WIN32
}
/** Destroy all resources allocated by the process handle in
* <b>process_handle</b>.
* If <b>also_terminate_process</b> is true, also terminate the
* process of the process handle. */
MOCK_IMPL(void,
tor_process_handle_destroy,(process_handle_t *process_handle,
int also_terminate_process))
{
if (!process_handle)
return;
if (also_terminate_process) {
if (tor_terminate_process(process_handle) < 0) {
const char *errstr =
#ifdef _WIN32
format_win32_error(GetLastError());
#else
strerror(errno);
#endif
log_notice(LD_GENERAL, "Failed to terminate process with "
"PID '%d' ('%s').", tor_process_get_pid(process_handle),
errstr);
} else {
log_info(LD_GENERAL, "Terminated process with PID '%d'.",
tor_process_get_pid(process_handle));
}
}
process_handle->status = PROCESS_STATUS_NOTRUNNING;
#ifdef _WIN32
if (process_handle->stdout_pipe)
CloseHandle(process_handle->stdout_pipe);
if (process_handle->stderr_pipe)
CloseHandle(process_handle->stderr_pipe);
if (process_handle->stdin_pipe)
CloseHandle(process_handle->stdin_pipe);
#else
if (process_handle->stdout_handle)
fclose(process_handle->stdout_handle);
if (process_handle->stderr_handle)
fclose(process_handle->stderr_handle);
if (process_handle->stdin_handle)
fclose(process_handle->stdin_handle);
clear_waitpid_callback(process_handle->waitpid_cb);
#endif
memset(process_handle, 0x0f, sizeof(process_handle_t));
tor_free(process_handle);
}
/** Get the exit code of a process specified by <b>process_handle</b> and store
* it in <b>exit_code</b>, if set to a non-NULL value. If <b>block</b> is set
* to true, the call will block until the process has exited. Otherwise if
* the process is still running, the function will return
* PROCESS_EXIT_RUNNING, and exit_code will be left unchanged. Returns
* PROCESS_EXIT_EXITED if the process did exit. If there is a failure,
* PROCESS_EXIT_ERROR will be returned and the contents of exit_code (if
* non-NULL) will be undefined. N.B. Under *nix operating systems, this will
* probably not work in Tor, because waitpid() is called in main.c to reap any
* terminated child processes.*/
int
tor_get_exit_code(process_handle_t *process_handle,
int block, int *exit_code)
{
#ifdef _WIN32
DWORD retval;
BOOL success;
if (block) {
/* Wait for the process to exit */
retval = WaitForSingleObject(process_handle->pid.hProcess, INFINITE);
if (retval != WAIT_OBJECT_0) {
log_warn(LD_GENERAL, "WaitForSingleObject() failed (%d): %s",
(int)retval, format_win32_error(GetLastError()));
return PROCESS_EXIT_ERROR;
}
} else {
retval = WaitForSingleObject(process_handle->pid.hProcess, 0);
if (WAIT_TIMEOUT == retval) {
/* Process has not exited */
return PROCESS_EXIT_RUNNING;
} else if (retval != WAIT_OBJECT_0) {
log_warn(LD_GENERAL, "WaitForSingleObject() failed (%d): %s",
(int)retval, format_win32_error(GetLastError()));
return PROCESS_EXIT_ERROR;
}
}
if (exit_code != NULL) {
success = GetExitCodeProcess(process_handle->pid.hProcess,
(PDWORD)exit_code);
if (!success) {
log_warn(LD_GENERAL, "GetExitCodeProcess() failed: %s",
format_win32_error(GetLastError()));
return PROCESS_EXIT_ERROR;
}
}
#else
int stat_loc;
int retval;
if (process_handle->waitpid_cb) {
/* We haven't processed a SIGCHLD yet. */
retval = waitpid(process_handle->pid, &stat_loc, block?0:WNOHANG);
if (retval == process_handle->pid) {
clear_waitpid_callback(process_handle->waitpid_cb);
process_handle->waitpid_cb = NULL;
process_handle->waitpid_exit_status = stat_loc;
}
} else {
/* We already got a SIGCHLD for this process, and handled it. */
retval = process_handle->pid;
stat_loc = process_handle->waitpid_exit_status;
}
if (!block && 0 == retval) {
/* Process has not exited */
return PROCESS_EXIT_RUNNING;
} else if (retval != process_handle->pid) {
log_warn(LD_GENERAL, "waitpid() failed for PID %d: %s",
(int)process_handle->pid, strerror(errno));
return PROCESS_EXIT_ERROR;
}
if (!WIFEXITED(stat_loc)) {
log_warn(LD_GENERAL, "Process %d did not exit normally",
(int)process_handle->pid);
return PROCESS_EXIT_ERROR;
}
if (exit_code != NULL)
*exit_code = WEXITSTATUS(stat_loc);
#endif // _WIN32
return PROCESS_EXIT_EXITED;
}
/** Helper: return the number of characters in <b>s</b> preceding the first
* occurrence of <b>ch</b>. If <b>ch</b> does not occur in <b>s</b>, return
* the length of <b>s</b>. Should be equivalent to strspn(s, "ch"). */
static inline size_t
str_num_before(const char *s, char ch)
{
const char *cp = strchr(s, ch);
if (cp)
return cp - s;
else
return strlen(s);
}
/** Return non-zero iff getenv would consider <b>s1</b> and <b>s2</b>
* to have the same name as strings in a process's environment. */
int
environment_variable_names_equal(const char *s1, const char *s2)
{
size_t s1_name_len = str_num_before(s1, '=');
size_t s2_name_len = str_num_before(s2, '=');
return (s1_name_len == s2_name_len &&
tor_memeq(s1, s2, s1_name_len));
}
/** Free <b>env</b> (assuming it was produced by
* process_environment_make). */
void
process_environment_free(process_environment_t *env)
{
if (env == NULL) return;
/* As both an optimization hack to reduce consing on Unixoid systems
* and a nice way to ensure that some otherwise-Windows-specific
* code will always get tested before changes to it get merged, the
* strings which env->unixoid_environment_block points to are packed
* into env->windows_environment_block. */
tor_free(env->unixoid_environment_block);
tor_free(env->windows_environment_block);
tor_free(env);
}
/** Make a process_environment_t containing the environment variables
* specified in <b>env_vars</b> (as C strings of the form
* "NAME=VALUE"). */
process_environment_t *
process_environment_make(struct smartlist_t *env_vars)
{
process_environment_t *env = tor_malloc_zero(sizeof(process_environment_t));
size_t n_env_vars = smartlist_len(env_vars);
size_t i;
size_t total_env_length;
smartlist_t *env_vars_sorted;
tor_assert(n_env_vars + 1 != 0);
env->unixoid_environment_block = tor_calloc(n_env_vars + 1, sizeof(char *));
/* env->unixoid_environment_block is already NULL-terminated,
* because we assume that NULL == 0 (and check that during compilation). */
total_env_length = 1; /* terminating NUL of terminating empty string */
for (i = 0; i < n_env_vars; ++i) {
const char *s = smartlist_get(env_vars, i);
size_t slen = strlen(s);
tor_assert(slen + 1 != 0);
tor_assert(slen + 1 < SIZE_MAX - total_env_length);
total_env_length += slen + 1;
}
env->windows_environment_block = tor_malloc_zero(total_env_length);
/* env->windows_environment_block is already
* (NUL-terminated-empty-string)-terminated. */
/* Some versions of Windows supposedly require that environment
* blocks be sorted. Or maybe some Windows programs (or their
* runtime libraries) fail to look up strings in non-sorted
* environment blocks.
*
* Also, sorting strings makes it easy to find duplicate environment
* variables and environment-variable strings without an '=' on all
* OSes, and they can cause badness. Let's complain about those. */
env_vars_sorted = smartlist_new();
smartlist_add_all(env_vars_sorted, env_vars);
smartlist_sort_strings(env_vars_sorted);
/* Now copy the strings into the environment blocks. */
{
char *cp = env->windows_environment_block;
const char *prev_env_var = NULL;
for (i = 0; i < n_env_vars; ++i) {
const char *s = smartlist_get(env_vars_sorted, i);
size_t slen = strlen(s);
size_t s_name_len = str_num_before(s, '=');
if (s_name_len == slen) {
log_warn(LD_GENERAL,
"Preparing an environment containing a variable "
"without a value: %s",
s);
}
if (prev_env_var != NULL &&
environment_variable_names_equal(s, prev_env_var)) {
log_warn(LD_GENERAL,
"Preparing an environment containing two variables "
"with the same name: %s and %s",
prev_env_var, s);
}
prev_env_var = s;
/* Actually copy the string into the environment. */
memcpy(cp, s, slen+1);
env->unixoid_environment_block[i] = cp;
cp += slen+1;
}
tor_assert(cp == env->windows_environment_block + total_env_length - 1);
}
smartlist_free(env_vars_sorted);
return env;
}
/** Return a newly allocated smartlist containing every variable in
* this process's environment, as a NUL-terminated string of the form
* "NAME=VALUE". Note that on some/many/most/all OSes, the parent
* process can put strings not of that form in our environment;
* callers should try to not get crashed by that.
*
* The returned strings are heap-allocated, and must be freed by the
* caller. */
struct smartlist_t *
get_current_process_environment_variables(void)
{
smartlist_t *sl = smartlist_new();
char **environ_tmp; /* Not const char ** ? Really? */
for (environ_tmp = get_environment(); *environ_tmp; ++environ_tmp) {
smartlist_add(sl, tor_strdup(*environ_tmp));
}
return sl;
}
/** For each string s in <b>env_vars</b> such that
* environment_variable_names_equal(s, <b>new_var</b>), remove it; if
* <b>free_p</b> is non-zero, call <b>free_old</b>(s). If
* <b>new_var</b> contains '=', insert it into <b>env_vars</b>. */
void
set_environment_variable_in_smartlist(struct smartlist_t *env_vars,
const char *new_var,
void (*free_old)(void*),
int free_p)
{
SMARTLIST_FOREACH_BEGIN(env_vars, const char *, s) {
if (environment_variable_names_equal(s, new_var)) {
SMARTLIST_DEL_CURRENT(env_vars, s);
if (free_p) {
free_old((void *)s);
}
}
} SMARTLIST_FOREACH_END(s);
if (strchr(new_var, '=') != NULL) {
smartlist_add(env_vars, (void *)new_var);
}
}
#ifdef _WIN32
/** Read from a handle <b>h</b> into <b>buf</b>, up to <b>count</b> bytes. If
* <b>hProcess</b> is NULL, the function will return immediately if there is
* nothing more to read. Otherwise <b>hProcess</b> should be set to the handle
* to the process owning the <b>h</b>. In this case, the function will exit
* only once the process has exited, or <b>count</b> bytes are read. Returns
* the number of bytes read, or -1 on error. */
ssize_t
tor_read_all_handle(HANDLE h, char *buf, size_t count,
const process_handle_t *process)
{
size_t numread = 0;
BOOL retval;
DWORD byte_count;
BOOL process_exited = FALSE;
if (count > SIZE_T_CEILING || count > SSIZE_MAX)
return -1;
while (numread != count) {
/* Check if there is anything to read */
retval = PeekNamedPipe(h, NULL, 0, NULL, &byte_count, NULL);
if (!retval) {
log_warn(LD_GENERAL,
"Failed to peek from handle: %s",
format_win32_error(GetLastError()));
return -1;
} else if (0 == byte_count) {
/* Nothing available: process exited or it is busy */
/* Exit if we don't know whether the process is running */
if (NULL == process)
break;
/* The process exited and there's nothing left to read from it */
if (process_exited)
break;
/* If process is not running, check for output one more time in case
it wrote something after the peek was performed. Otherwise keep on
waiting for output */
tor_assert(process != NULL);
byte_count = WaitForSingleObject(process->pid.hProcess, 0);
if (WAIT_TIMEOUT != byte_count)
process_exited = TRUE;
continue;
}
/* There is data to read; read it */
retval = ReadFile(h, buf+numread, count-numread, &byte_count, NULL);
tor_assert(byte_count + numread <= count);
if (!retval) {
log_warn(LD_GENERAL, "Failed to read from handle: %s",
format_win32_error(GetLastError()));
return -1;
} else if (0 == byte_count) {
/* End of file */
break;
}
numread += byte_count;
}
return (ssize_t)numread;
}
#else
/** Read from a handle <b>h</b> into <b>buf</b>, up to <b>count</b> bytes. If
* <b>process</b> is NULL, the function will return immediately if there is
* nothing more to read. Otherwise data will be read until end of file, or
* <b>count</b> bytes are read. Returns the number of bytes read, or -1 on
* error. Sets <b>eof</b> to true if <b>eof</b> is not NULL and the end of the
* file has been reached. */
ssize_t
tor_read_all_handle(FILE *h, char *buf, size_t count,
const process_handle_t *process,
int *eof)
{
size_t numread = 0;
char *retval;
if (eof)
*eof = 0;
if (count > SIZE_T_CEILING || count > SSIZE_MAX)
return -1;
while (numread != count) {
/* Use fgets because that is what we use in log_from_pipe() */
retval = fgets(buf+numread, (int)(count-numread), h);
if (NULL == retval) {
if (feof(h)) {
log_debug(LD_GENERAL, "fgets() reached end of file");
if (eof)
*eof = 1;
break;
} else {
if (EAGAIN == errno) {
if (process)
continue;
else
break;
} else {
log_warn(LD_GENERAL, "fgets() from handle failed: %s",
strerror(errno));
return -1;
}
}
}
tor_assert(retval != NULL);
tor_assert(strlen(retval) + numread <= count);
numread += strlen(retval);
}
log_debug(LD_GENERAL, "fgets() read %d bytes from handle", (int)numread);
return (ssize_t)numread;
}
#endif
/** Read from stdout of a process until the process exits. */
ssize_t
tor_read_all_from_process_stdout(const process_handle_t *process_handle,
char *buf, size_t count)
{
#ifdef _WIN32
return tor_read_all_handle(process_handle->stdout_pipe, buf, count,
process_handle);
#else
return tor_read_all_handle(process_handle->stdout_handle, buf, count,
process_handle, NULL);
#endif
}
/** Read from stdout of a process until the process exits. */
ssize_t
tor_read_all_from_process_stderr(const process_handle_t *process_handle,
char *buf, size_t count)
{
#ifdef _WIN32
return tor_read_all_handle(process_handle->stderr_pipe, buf, count,
process_handle);
#else
return tor_read_all_handle(process_handle->stderr_handle, buf, count,
process_handle, NULL);
#endif
}
/** Split buf into lines, and add to smartlist. The buffer <b>buf</b> will be
* modified. The resulting smartlist will consist of pointers to buf, so there
* is no need to free the contents of sl. <b>buf</b> must be a NUL-terminated
* string. <b>len</b> should be set to the length of the buffer excluding the
* NUL. Non-printable characters (including NUL) will be replaced with "." */
int
tor_split_lines(smartlist_t *sl, char *buf, int len)
{
/* Index in buf of the start of the current line */
int start = 0;
/* Index in buf of the current character being processed */
int cur = 0;
/* Are we currently in a line */
char in_line = 0;
/* Loop over string */
while (cur < len) {
/* Loop until end of line or end of string */
for (; cur < len; cur++) {
if (in_line) {
if ('\r' == buf[cur] || '\n' == buf[cur]) {
/* End of line */
buf[cur] = '\0';
/* Point cur to the next line */
cur++;
/* Line starts at start and ends with a nul */
break;
} else {
if (!TOR_ISPRINT(buf[cur]))
buf[cur] = '.';
}
} else {
if ('\r' == buf[cur] || '\n' == buf[cur]) {
/* Skip leading vertical space */
;
} else {
in_line = 1;
start = cur;
if (!TOR_ISPRINT(buf[cur]))
buf[cur] = '.';
}
}
}
/* We are at the end of the line or end of string. If in_line is true there
* is a line which starts at buf+start and ends at a NUL. cur points to
* the character after the NUL. */
if (in_line)
smartlist_add(sl, (void *)(buf+start));
in_line = 0;
}
return smartlist_len(sl);
}
/** Return a string corresponding to <b>stream_status</b>. */
const char *
stream_status_to_string(enum stream_status stream_status)
{
switch (stream_status) {
case IO_STREAM_OKAY:
return "okay";
case IO_STREAM_EAGAIN:
return "temporarily unavailable";
case IO_STREAM_TERM:
return "terminated";
case IO_STREAM_CLOSED:
return "closed";
default:
tor_fragile_assert();
return "unknown";
}
}
/* DOCDOC */
static void
log_portfw_spawn_error_message(const char *buf,
const char *executable, int *child_status)
{
/* Parse error message */
int retval, child_state, saved_errno;
retval = tor_sscanf(buf, SPAWN_ERROR_MESSAGE "%x/%x",
&child_state, &saved_errno);
if (retval == 2) {
log_warn(LD_GENERAL,
"Failed to start child process \"%s\" in state %d: %s",
executable, child_state, strerror(saved_errno));
if (child_status)
*child_status = 1;
} else {
/* Failed to parse message from child process, log it as a
warning */
log_warn(LD_GENERAL,
"Unexpected message from port forwarding helper \"%s\": %s",
executable, buf);
}
}
#ifdef _WIN32
/** Return a smartlist containing lines outputted from
* <b>handle</b>. Return NULL on error, and set
* <b>stream_status_out</b> appropriately. */
MOCK_IMPL(smartlist_t *,
tor_get_lines_from_handle, (HANDLE *handle,
enum stream_status *stream_status_out))
{
int pos;
char stdout_buf[600] = {0};
smartlist_t *lines = NULL;
tor_assert(stream_status_out);
*stream_status_out = IO_STREAM_TERM;
pos = tor_read_all_handle(handle, stdout_buf, sizeof(stdout_buf) - 1, NULL);
if (pos < 0) {
*stream_status_out = IO_STREAM_TERM;
return NULL;
}
if (pos == 0) {
*stream_status_out = IO_STREAM_EAGAIN;
return NULL;
}
/* End with a null even if there isn't a \r\n at the end */
/* TODO: What if this is a partial line? */
stdout_buf[pos] = '\0';
/* Split up the buffer */
lines = smartlist_new();
tor_split_lines(lines, stdout_buf, pos);
/* Currently 'lines' is populated with strings residing on the
stack. Replace them with their exact copies on the heap: */
SMARTLIST_FOREACH(lines, char *, line,
SMARTLIST_REPLACE_CURRENT(lines, line, tor_strdup(line)));
*stream_status_out = IO_STREAM_OKAY;
return lines;
}
/** Read from stream, and send lines to log at the specified log level.
* Returns -1 if there is a error reading, and 0 otherwise.
* If the generated stream is flushed more often than on new lines, or
* a read exceeds 256 bytes, lines will be truncated. This should be fixed,
* along with the corresponding problem on *nix (see bug #2045).
*/
static int
log_from_handle(HANDLE *pipe, int severity)
{
char buf[256];
int pos;
smartlist_t *lines;
pos = tor_read_all_handle(pipe, buf, sizeof(buf) - 1, NULL);
if (pos < 0) {
/* Error */
log_warn(LD_GENERAL, "Failed to read data from subprocess");
return -1;
}
if (0 == pos) {
/* There's nothing to read (process is busy or has exited) */
log_debug(LD_GENERAL, "Subprocess had nothing to say");
return 0;
}
/* End with a null even if there isn't a \r\n at the end */
/* TODO: What if this is a partial line? */
buf[pos] = '\0';
log_debug(LD_GENERAL, "Subprocess had %d bytes to say", pos);
/* Split up the buffer */
lines = smartlist_new();
tor_split_lines(lines, buf, pos);
/* Log each line */
SMARTLIST_FOREACH(lines, char *, line,
{
log_fn(severity, LD_GENERAL, "Port forwarding helper says: %s", line);
});
smartlist_free(lines);
return 0;
}
#else
/** Return a smartlist containing lines outputted from
* <b>handle</b>. Return NULL on error, and set
* <b>stream_status_out</b> appropriately. */
MOCK_IMPL(smartlist_t *,
tor_get_lines_from_handle, (FILE *handle,
enum stream_status *stream_status_out))
{
enum stream_status stream_status;
char stdout_buf[400];
smartlist_t *lines = NULL;
while (1) {
memset(stdout_buf, 0, sizeof(stdout_buf));
stream_status = get_string_from_pipe(handle,
stdout_buf, sizeof(stdout_buf) - 1);
if (stream_status != IO_STREAM_OKAY)
goto done;
if (!lines) lines = smartlist_new();
smartlist_add(lines, tor_strdup(stdout_buf));
}
done:
*stream_status_out = stream_status;
return lines;
}
/** Read from stream, and send lines to log at the specified log level.
* Returns 1 if stream is closed normally, -1 if there is a error reading, and
* 0 otherwise. Handles lines from tor-fw-helper and
* tor_spawn_background() specially.
*/
static int
log_from_pipe(FILE *stream, int severity, const char *executable,
int *child_status)
{
char buf[256];
enum stream_status r;
for (;;) {
r = get_string_from_pipe(stream, buf, sizeof(buf) - 1);
if (r == IO_STREAM_CLOSED) {
return 1;
} else if (r == IO_STREAM_EAGAIN) {
return 0;
} else if (r == IO_STREAM_TERM) {
return -1;
}
tor_assert(r == IO_STREAM_OKAY);
/* Check if buf starts with SPAWN_ERROR_MESSAGE */
if (strcmpstart(buf, SPAWN_ERROR_MESSAGE) == 0) {
log_portfw_spawn_error_message(buf, executable, child_status);
} else {
log_fn(severity, LD_GENERAL, "Port forwarding helper says: %s", buf);
}
}
/* We should never get here */
return -1;
}
#endif
/** Reads from <b>stream</b> and stores input in <b>buf_out</b> making
* sure it's below <b>count</b> bytes.
* If the string has a trailing newline, we strip it off.
*
* This function is specifically created to handle input from managed
* proxies, according to the pluggable transports spec. Make sure it
* fits your needs before using it.
*
* Returns:
* IO_STREAM_CLOSED: If the stream is closed.
* IO_STREAM_EAGAIN: If there is nothing to read and we should check back
* later.
* IO_STREAM_TERM: If something is wrong with the stream.
* IO_STREAM_OKAY: If everything went okay and we got a string
* in <b>buf_out</b>. */
enum stream_status
get_string_from_pipe(FILE *stream, char *buf_out, size_t count)
{
char *retval;
size_t len;
tor_assert(count <= INT_MAX);
retval = fgets(buf_out, (int)count, stream);
if (!retval) {
if (feof(stream)) {
/* Program has closed stream (probably it exited) */
/* TODO: check error */
return IO_STREAM_CLOSED;
} else {
if (EAGAIN == errno) {
/* Nothing more to read, try again next time */
return IO_STREAM_EAGAIN;
} else {
/* There was a problem, abandon this child process */
return IO_STREAM_TERM;
}
}
} else {
len = strlen(buf_out);
if (len == 0) {
/* this probably means we got a NUL at the start of the string. */
return IO_STREAM_EAGAIN;
}
if (buf_out[len - 1] == '\n') {
/* Remove the trailing newline */
buf_out[len - 1] = '\0';
} else {
/* No newline; check whether we overflowed the buffer */
if (!feof(stream))
log_info(LD_GENERAL,
"Line from stream was truncated: %s", buf_out);
/* TODO: What to do with this error? */
}
return IO_STREAM_OKAY;
}
/* We should never get here */
return IO_STREAM_TERM;
}
/** Parse a <b>line</b> from tor-fw-helper and issue an appropriate
* log message to our user. */
static void
handle_fw_helper_line(const char *executable, const char *line)
{
smartlist_t *tokens = smartlist_new();
char *message = NULL;
char *message_for_log = NULL;
const char *external_port = NULL;
const char *internal_port = NULL;
const char *result = NULL;
int port = 0;
int success = 0;
if (strcmpstart(line, SPAWN_ERROR_MESSAGE) == 0) {
/* We need to check for SPAWN_ERROR_MESSAGE again here, since it's
* possible that it got sent after we tried to read it in log_from_pipe.
*
* XXX Ideally, we should be using one of stdout/stderr for the real
* output, and one for the output of the startup code. We used to do that
* before cd05f35d2c.
*/
int child_status;
log_portfw_spawn_error_message(line, executable, &child_status);
goto done;
}
smartlist_split_string(tokens, line, NULL,
SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK, -1);
if (smartlist_len(tokens) < 5)
goto err;
if (strcmp(smartlist_get(tokens, 0), "tor-fw-helper") ||
strcmp(smartlist_get(tokens, 1), "tcp-forward"))
goto err;
external_port = smartlist_get(tokens, 2);
internal_port = smartlist_get(tokens, 3);
result = smartlist_get(tokens, 4);
if (smartlist_len(tokens) > 5) {
/* If there are more than 5 tokens, they are part of [<message>].
Let's use a second smartlist to form the whole message;
strncat loops suck. */
int i;
int message_words_n = smartlist_len(tokens) - 5;
smartlist_t *message_sl = smartlist_new();
for (i = 0; i < message_words_n; i++)
smartlist_add(message_sl, smartlist_get(tokens, 5+i));
tor_assert(smartlist_len(message_sl) > 0);
message = smartlist_join_strings(message_sl, " ", 0, NULL);
/* wrap the message in log-friendly wrapping */
tor_asprintf(&message_for_log, " ('%s')", message);
smartlist_free(message_sl);
}
port = atoi(external_port);
if (port < 1 || port > 65535)
goto err;
port = atoi(internal_port);
if (port < 1 || port > 65535)
goto err;
if (!strcmp(result, "SUCCESS"))
success = 1;
else if (!strcmp(result, "FAIL"))
success = 0;
else
goto err;
if (!success) {
log_warn(LD_GENERAL, "Tor was unable to forward TCP port '%s' to '%s'%s. "
"Please make sure that your router supports port "
"forwarding protocols (like NAT-PMP). Note that if '%s' is "
"your ORPort, your relay will be unable to receive inbound "
"traffic.", external_port, internal_port,
message_for_log ? message_for_log : "",
internal_port);
} else {
log_info(LD_GENERAL,
"Tor successfully forwarded TCP port '%s' to '%s'%s.",
external_port, internal_port,
message_for_log ? message_for_log : "");
}
goto done;
err:
log_warn(LD_GENERAL, "tor-fw-helper sent us a string we could not "
"parse (%s).", line);
done:
SMARTLIST_FOREACH(tokens, char *, cp, tor_free(cp));
smartlist_free(tokens);
tor_free(message);
tor_free(message_for_log);
}
/** Read what tor-fw-helper has to say in its stdout and handle it
* appropriately */
static int
handle_fw_helper_output(const char *executable,
process_handle_t *process_handle)
{
smartlist_t *fw_helper_output = NULL;
enum stream_status stream_status = 0;
fw_helper_output =
tor_get_lines_from_handle(tor_process_get_stdout_pipe(process_handle),
&stream_status);
if (!fw_helper_output) { /* didn't get any output from tor-fw-helper */
/* if EAGAIN we should retry in the future */
return (stream_status == IO_STREAM_EAGAIN) ? 0 : -1;
}
/* Handle the lines we got: */
SMARTLIST_FOREACH_BEGIN(fw_helper_output, char *, line) {
handle_fw_helper_line(executable, line);
tor_free(line);
} SMARTLIST_FOREACH_END(line);
smartlist_free(fw_helper_output);
return 0;
}
/** Spawn tor-fw-helper and ask it to forward the ports in
* <b>ports_to_forward</b>. <b>ports_to_forward</b> contains strings
* of the form "<external port>:<internal port>", which is the format
* that tor-fw-helper expects. */
void
tor_check_port_forwarding(const char *filename,
smartlist_t *ports_to_forward,
time_t now)
{
/* When fw-helper succeeds, how long do we wait until running it again */
#define TIME_TO_EXEC_FWHELPER_SUCCESS 300
/* When fw-helper failed to start, how long do we wait until running it again
*/
#define TIME_TO_EXEC_FWHELPER_FAIL 60
/* Static variables are initialized to zero, so child_handle.status=0
* which corresponds to it not running on startup */
static process_handle_t *child_handle=NULL;
static time_t time_to_run_helper = 0;
int stderr_status, retval;
int stdout_status = 0;
tor_assert(filename);
/* Start the child, if it is not already running */
if ((!child_handle || child_handle->status != PROCESS_STATUS_RUNNING) &&
time_to_run_helper < now) {
/*tor-fw-helper cli looks like this: tor_fw_helper -p :5555 -p 4555:1111 */
const char **argv; /* cli arguments */
int args_n, status;
int argv_index = 0; /* index inside 'argv' */
tor_assert(smartlist_len(ports_to_forward) > 0);
/* check for overflow during 'argv' allocation:
(len(ports_to_forward)*2 + 2)*sizeof(char*) > SIZE_MAX ==
len(ports_to_forward) > (((SIZE_MAX/sizeof(char*)) - 2)/2) */
if ((size_t) smartlist_len(ports_to_forward) >
(((SIZE_MAX/sizeof(char*)) - 2)/2)) {
log_warn(LD_GENERAL,
"Overflow during argv allocation. This shouldn't happen.");
return;
}
/* check for overflow during 'argv_index' increase:
((len(ports_to_forward)*2 + 2) > INT_MAX) ==
len(ports_to_forward) > (INT_MAX - 2)/2 */
if (smartlist_len(ports_to_forward) > (INT_MAX - 2)/2) {
log_warn(LD_GENERAL,
"Overflow during argv_index increase. This shouldn't happen.");
return;
}
/* Calculate number of cli arguments: one for the filename, two
for each smartlist element (one for "-p" and one for the
ports), and one for the final NULL. */
args_n = 1 + 2*smartlist_len(ports_to_forward) + 1;
argv = tor_calloc(args_n, sizeof(char *));
argv[argv_index++] = filename;
SMARTLIST_FOREACH_BEGIN(ports_to_forward, const char *, port) {
argv[argv_index++] = "-p";
argv[argv_index++] = port;
} SMARTLIST_FOREACH_END(port);
argv[argv_index] = NULL;
/* Assume tor-fw-helper will succeed, start it later*/
time_to_run_helper = now + TIME_TO_EXEC_FWHELPER_SUCCESS;
if (child_handle) {
tor_process_handle_destroy(child_handle, 1);
child_handle = NULL;
}
#ifdef _WIN32
/* Passing NULL as lpApplicationName makes Windows search for the .exe */
status = tor_spawn_background(NULL, argv, NULL, &child_handle);
#else
status = tor_spawn_background(filename, argv, NULL, &child_handle);
#endif
tor_free_((void*)argv);
argv=NULL;
if (PROCESS_STATUS_ERROR == status) {
log_warn(LD_GENERAL, "Failed to start port forwarding helper %s",
filename);
time_to_run_helper = now + TIME_TO_EXEC_FWHELPER_FAIL;
return;
}
log_info(LD_GENERAL,
"Started port forwarding helper (%s) with pid '%d'",
filename, tor_process_get_pid(child_handle));
}
/* If child is running, read from its stdout and stderr) */
if (child_handle && PROCESS_STATUS_RUNNING == child_handle->status) {
/* Read from stdout/stderr and log result */
retval = 0;
#ifdef _WIN32
stderr_status = log_from_handle(child_handle->stderr_pipe, LOG_INFO);
#else
stderr_status = log_from_pipe(child_handle->stderr_handle,
LOG_INFO, filename, &retval);
#endif
if (handle_fw_helper_output(filename, child_handle) < 0) {
log_warn(LD_GENERAL, "Failed to handle fw helper output.");
stdout_status = -1;
retval = -1;
}
if (retval) {
/* There was a problem in the child process */
time_to_run_helper = now + TIME_TO_EXEC_FWHELPER_FAIL;
}
/* Combine the two statuses in order of severity */
if (-1 == stdout_status || -1 == stderr_status)
/* There was a failure */
retval = -1;
#ifdef _WIN32
else if (!child_handle || tor_get_exit_code(child_handle, 0, NULL) !=
PROCESS_EXIT_RUNNING) {
/* process has exited or there was an error */
/* TODO: Do something with the process return value */
/* TODO: What if the process output something since
* between log_from_handle and tor_get_exit_code? */
retval = 1;
}
#else
else if (1 == stdout_status || 1 == stderr_status)
/* stdout or stderr was closed, the process probably
* exited. It will be reaped by waitpid() in main.c */
/* TODO: Do something with the process return value */
retval = 1;
#endif
else
/* Both are fine */
retval = 0;
/* If either pipe indicates a failure, act on it */
if (0 != retval) {
if (1 == retval) {
log_info(LD_GENERAL, "Port forwarding helper terminated");
child_handle->status = PROCESS_STATUS_NOTRUNNING;
} else {
log_warn(LD_GENERAL, "Failed to read from port forwarding helper");
child_handle->status = PROCESS_STATUS_ERROR;
}
/* TODO: The child might not actually be finished (maybe it failed or
closed stdout/stderr), so maybe we shouldn't start another? */
}
}
}
/** Initialize the insecure RNG <b>rng</b> from a seed value <b>seed</b>. */
void
tor_init_weak_random(tor_weak_rng_t *rng, unsigned seed)
{
rng->state = (uint32_t)(seed & 0x7fffffff);
}
/** Return a randomly chosen value in the range 0..TOR_WEAK_RANDOM_MAX based
* on the RNG state of <b>rng</b>. This entropy will not be cryptographically
* strong; do not rely on it for anything an adversary should not be able to
* predict. */
int32_t
tor_weak_random(tor_weak_rng_t *rng)
{
/* Here's a linear congruential generator. OpenBSD and glibc use these
* parameters; they aren't too bad, and should have maximal period over the
* range 0..INT32_MAX. We don't want to use the platform rand() or random(),
* since some platforms have bad weak RNGs that only return values in the
* range 0..INT16_MAX, which just isn't enough. */
rng->state = (rng->state * 1103515245 + 12345) & 0x7fffffff;
return (int32_t) rng->state;
}
/** Return a random number in the range [0 , <b>top</b>). {That is, the range
* of integers i such that 0 <= i < top.} Chooses uniformly. Requires that
* top is greater than 0. This randomness is not cryptographically strong; do
* not rely on it for anything an adversary should not be able to predict. */
int32_t
tor_weak_random_range(tor_weak_rng_t *rng, int32_t top)
{
/* We don't want to just do tor_weak_random() % top, since random() is often
* implemented with an LCG whose modulus is a power of 2, and those are
* cyclic in their low-order bits. */
int divisor, result;
tor_assert(top > 0);
divisor = TOR_WEAK_RANDOM_MAX / top;
do {
result = (int32_t)(tor_weak_random(rng) / divisor);
} while (result >= top);
return result;
}
/** Cast a given double value to a int64_t. Return 0 if number is NaN.
* Returns either INT64_MIN or INT64_MAX if number is outside of the int64_t
* range. */
int64_t
clamp_double_to_int64(double number)
{
int exponent;
#if (defined(__MINGW32__) || defined(__MINGW64__)) && GCC_VERSION >= 409
/*
Mingw's math.h uses gcc's __builtin_choose_expr() facility to declare
isnan, isfinite, and signbit. But as implemented in at least some
versions of gcc, __builtin_choose_expr() can generate type warnings
even from branches that are not taken. So, suppress those warnings.
*/
#define PROBLEMATIC_FLOAT_CONVERSION_WARNING
DISABLE_GCC_WARNING(float-conversion)
#endif
/*
With clang 4.0 we apparently run into "double promotion" warnings here,
since clang thinks we're promoting a double to a long double.
*/
#if defined(__clang__)
#if __has_warning("-Wdouble-promotion")
#define PROBLEMATIC_DOUBLE_PROMOTION_WARNING
DISABLE_GCC_WARNING(double-promotion)
#endif
#endif
/* NaN is a special case that can't be used with the logic below. */
if (isnan(number)) {
return 0;
}
/* Time to validate if result can overflows a int64_t value. Fun with
* float! Find that exponent exp such that
* number == x * 2^exp
* for some x with abs(x) in [0.5, 1.0). Note that this implies that the
* magnitude of number is strictly less than 2^exp.
*
* If number is infinite, the call to frexp is legal but the contents of
* are exponent unspecified. */
frexp(number, &exponent);
/* If the magnitude of number is strictly less than 2^63, the truncated
* version of number is guaranteed to be representable. The only
* representable integer for which this is not the case is INT64_MIN, but
* it is covered by the logic below. */
if (isfinite(number) && exponent <= 63) {
return (int64_t)number;
}
/* Handle infinities and finite numbers with magnitude >= 2^63. */
return signbit(number) ? INT64_MIN : INT64_MAX;
#ifdef PROBLEMATIC_DOUBLE_PROMOTION_WARNING
ENABLE_GCC_WARNING(double-promotion)
#endif
#ifdef PROBLEMATIC_FLOAT_CONVERSION_WARNING
ENABLE_GCC_WARNING(float-conversion)
#endif
}
/** Return a uint64_t value from <b>a</b> in network byte order. */
uint64_t
tor_htonll(uint64_t a)
{
#ifdef WORDS_BIGENDIAN
/* Big endian. */
return a;
#else /* WORDS_BIGENDIAN */
/* Little endian. The worst... */
return htonl((uint32_t)(a>>32)) |
(((uint64_t)htonl((uint32_t)a))<<32);
#endif /* WORDS_BIGENDIAN */
}
/** Return a uint64_t value from <b>a</b> in host byte order. */
uint64_t
tor_ntohll(uint64_t a)
{
return tor_htonll(a);
}