|
|
@ -234,11 +234,12 @@ mod tests { |
|
|
|
use std::fmt::{Display, Formatter}; |
|
|
|
|
|
|
|
// Generate a Prime Field to Test with...
|
|
|
|
// This is way larger than the 64 bit prime the paper specifies, but wth
|
|
|
|
#[derive(PrimeField)] |
|
|
|
#[PrimeFieldModulus = "65537"] |
|
|
|
#[PrimeFieldGenerator = "3"] |
|
|
|
#[PrimeFieldModulus = "52435875175126190479447740508185965837690552500527637822603658699938581184513"] |
|
|
|
#[PrimeFieldGenerator = "7"] |
|
|
|
#[PrimeFieldReprEndianness = "little"] |
|
|
|
struct Fp([u64; 1]); |
|
|
|
struct Fp([u64; 4]); |
|
|
|
|
|
|
|
impl Display for Fp { |
|
|
|
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { |
|
|
@ -249,18 +250,18 @@ mod tests { |
|
|
|
#[test] |
|
|
|
fn it_works() { |
|
|
|
let rng = OsRng; |
|
|
|
let s = 3u64; |
|
|
|
let t = 6u64; |
|
|
|
let s = 10u64; |
|
|
|
let t = 30u64; |
|
|
|
let dhf = HashKey::<Fp>::new(rng, s, t); |
|
|
|
|
|
|
|
let mut solver = Solver::new(s, t); |
|
|
|
for i in 0..10 { |
|
|
|
for i in 0..40 { |
|
|
|
// These are the indexes which are to be random...you can try swapping them around..
|
|
|
|
// REMEMBER: the number of true hash needs to be AT LEAST `t+1` AND the number of fake hashes
|
|
|
|
// must be AT-MOST `s`.
|
|
|
|
// If |random hashes| > s this this procedure will *not* work
|
|
|
|
// There is an extended algorithm for extract assuming |true hashes| > t though - we do not implement it.
|
|
|
|
if i != 2 && i != 5 && i != 8 { |
|
|
|
if i != 2 && i != 5 && i != 8 && i < 34 { |
|
|
|
let x0 = Fp::random(rng); |
|
|
|
let hash = dhf.generate_hash(x0); |
|
|
|
solver.add_hash(hash); |
|
|
@ -269,6 +270,12 @@ mod tests { |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
assert_eq!(solver.attempt_solve().unwrap(), vec![0, 1, 3, 4, 6, 7, 9]); |
|
|
|
assert_eq!( |
|
|
|
solver.attempt_solve().unwrap(), |
|
|
|
vec![ |
|
|
|
0, 1, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, |
|
|
|
25, 26, 27, 28, 29, 30, 31, 32, 33 |
|
|
|
] |
|
|
|
); |
|
|
|
} |
|
|
|
} |
|
|
|