A toy implementation of an (s-t)Detectable Hash Function
Go to file
Sarah Jamie Lewis e6be185d3d Polish test 2021-08-15 15:28:12 -07:00
src Polish test 2021-08-15 15:28:12 -07:00
.gitignore Initial Commit 2021-08-14 10:57:08 -07:00
Cargo.toml Use an actual FF lib 2021-08-15 15:21:46 -07:00
LICENSE Add License 2021-08-14 11:18:28 -07:00
README.md Use an actual FF lib 2021-08-15 15:21:46 -07:00

README.md

fuzzyhash - A toy (s-t)Detectable Hash Function

This package contains a toy implementation of an (s-t)Detectable Hash Function as described in The Apple PSI System by Abhishek Bhowmick, Dan Boneh, Steve Myers, Kunal Talwa, and Karl Tarbe.

WARNING: This is a toy implementation. Do not use this as anything other than a toy.

How it Works

A client creates new HashKey which instantiates the secret key behind the scenes.

A client can then use this HashKey to produce two kinds of Hash.

The first kind of hash (Hash(x)) "a true hash" multiplies the given x by the secret key (treating the secret key as a s x t matrix of polynomials (p_1..p_s)). DHF(k,x):=(x,p_1(x),...,p_s(x))

The second kind of hash is a random hash of the same size as a true hash, but all the elements are selected randomly from the domain.

The Detection Algorithm

Given a set of hashes, a Solver is able to distinguish true hashes from random hashes as long as there are at least t+1 true hashes and a maximum of s random hashes.

The solver does this by computing the kernel basis vectors of a Matrix containing an extended version of the hashes which transforms the upper portion of the matrix into a Vandermonde matrix, and the lower portion contains the evaluated polynomials from the hashes themselves.

Our solver does this by first appending the identity matrix to the lower portion of the matrix, then transposing, converting the matrix to row-echelon form, and transposing again - at which point the kernel basis vectors, if there are any, are found in the lower portion of matrix.

(If there are no basis vectors then the algorithm returns an error as there are not enough true hashes in the set to compute a solution)

We then check the kernel basis for rows where all values are zero, and eliminate these as random rows. What is left is the solution to the detection algorithm - the indexes of the original hashes which are actually true hashes.

Sample Run

Hash 0: Hash([PrimeOrderDomain { val: 387 }, PrimeOrderDomain { val: 62 }, PrimeOrderDomain { val: 515 }, PrimeOrderDomain { val: 10 }, PrimeOrderDomain { val: 338 }])
Hash 1: Hash([PrimeOrderDomain { val: 297 }, PrimeOrderDomain { val: 662 }, PrimeOrderDomain { val: 463 }, PrimeOrderDomain { val: 164 }, PrimeOrderDomain { val: 576 }])
Hash 2: Hash([PrimeOrderDomain { val: 330 }, PrimeOrderDomain { val: 364 }, PrimeOrderDomain { val: 765 }, PrimeOrderDomain { val: 139 }, PrimeOrderDomain { val: 96 }])
Hash 3: Hash([PrimeOrderDomain { val: 192 }, PrimeOrderDomain { val: 491 }, PrimeOrderDomain { val: 602 }, PrimeOrderDomain { val: 537 }, PrimeOrderDomain { val: 588 }])
Hash 4: Hash([PrimeOrderDomain { val: 535 }, PrimeOrderDomain { val: 873 }, PrimeOrderDomain { val: 84 }, PrimeOrderDomain { val: 570 }, PrimeOrderDomain { val: 639 }])
Hash 5: Hash([PrimeOrderDomain { val: 731 }, PrimeOrderDomain { val: 440 }, PrimeOrderDomain { val: 694 }, PrimeOrderDomain { val: 235 }, PrimeOrderDomain { val: 753 }])
Hash 6: Hash([PrimeOrderDomain { val: 484 }, PrimeOrderDomain { val: 186 }, PrimeOrderDomain { val: 658 }, PrimeOrderDomain { val: 30 }, PrimeOrderDomain { val: 127 }])
Hash 7: Hash([PrimeOrderDomain { val: 545 }, PrimeOrderDomain { val: 881 }, PrimeOrderDomain { val: 36 }, PrimeOrderDomain { val: 371 }, PrimeOrderDomain { val: 654 }])
Hash 8: Hash([PrimeOrderDomain { val: 370 }, PrimeOrderDomain { val: 883 }, PrimeOrderDomain { val: 24 }, PrimeOrderDomain { val: 543 }, PrimeOrderDomain { val: 436 }])
Hash 9: Hash([PrimeOrderDomain { val: 405 }, PrimeOrderDomain { val: 145 }, PrimeOrderDomain { val: 345 }, PrimeOrderDomain { val: 879 }, PrimeOrderDomain { val: 428 }])


    1   387   753   475   216    62   515    10   338     1     0     0     0     0     0     0     0     0     0 ;
    1   297   396   528   704   662   463   164   576     0     1     0     0     0     0     0     0     0     0 ;
    1   330   686   195   486   364   765   139    96     0     0     1     0     0     0     0     0     0     0 ;
    1   192   497   515   423   491   602   537   588     0     0     0     1     0     0     0     0     0     0 ;
    1   535   611   469   781   873    84   570   639     0     0     0     0     1     0     0     0     0     0 ;
    1   731   387   831   753   440   694   235   753     0     0     0     0     0     1     0     0     0     0 ;
    1   484    88    16   648   186   658    30   127     0     0     0     0     0     0     1     0     0     0 ;
    1   545   767   238   208   881    36   371   654     0     0     0     0     0     0     0     1     0     0 ;
    1   370   302   865   730   883    24   543   436     0     0     0     0     0     0     0     0     1     0 ;
    1   405   817    34   465   145   345   879   428     0     0     0     0     0     0     0     0     0     1 ;



    1     0     0     0     0     0     0     0     0     0 ;
387   870     0     0     0     0     0     0     0     0 ;
753   436   630     0     0     0     0     0     0     0 ;
475   390   285   802     0     0     0     0     0     0 ;
216   514   428   220   710     0     0     0     0     0 ;
62   821   274   518    43   643     0     0     0     0 ;
515   396   458   151   823   777   532     0     0     0 ;
10   533   442   716   677   721   673   760     0     0 ;
338    98   559    41   463   754   718   832     0     0 ;
----------------------------------------
    1   886   311   350   312   413   649   120   867     0 ;
    0     0     0     0     0     0     0     0     1   303 ;
    0     0     0     0     0     0     1   851     0     0 ;
    0     0     0     1   510   173   749   875   641   860 ;
    0     0     0     0     0     0     0     0     0     1 ;
    0     0     0     0     0     1   304   795     0     0 ;
    0     0     0     0     1     7    97   332    71    51 ;
    0     0     0     0     0     0     0     1   527   156 ;
    0     1   575    42    58   838   716   213   554   403 ;
    0     0     1   494     6   342   145   361     0     0 ;
Found 2 Kernel Basis Vectors...
Solution: [0, 1, 3, 4, 6, 7, 8]